DeepSeek介绍,以及本地部署和API使用

认识大模型

决策式ai

通过数据作分析和预测

生成式ai

基于历史数据进行创造,生成全新的内容

推理模型创新

  1. GPT的o1慢思考

    成本极高,功能强大

    模型参数量大,推理速度相对更慢,处理复杂问题时需要较长的时间

  2. DeepSeek的r1深度思考

    采用几乎纯强化学习进行训练,通过奖励机制来优化模型的推理能力

    仅需约500万美元训练成本,对比传统大模型的数亿美元投入,成本降低超90%

    从训练模板就硬性要求思维链,能够更全面地展示模型的推理过程

认识deepseek

  1. deepseek是什么
  2. deepseek是如何实现的
  3. 为什么说deepseek冲翻了美股
  4. 对deepseek的使用体验

deepseek是什么

deepseek是杭州深度求索人工智能基础技术研究有限公司的一款ai产品,这个名字寓意着通过深度学习技术探索未知的领域

这个公司的母公司是幻方量化,也是个巨无霸

23年,deepseek初发布

2024年,他们发布了DeepSeek-V,技术小小的震惊了一下行业

2025年1月,他们发布了DeepSeek-R1,一鸣惊人

deepseek是如何实现的

ai智能领域的陈润生院士的观点是:人工智能的未来绝对不是一味的堆算力,芯片堆不出真正的智能,基础理论的突破才是关键

以OpenAI为首的老牌的大模型公司占据了市场主流,大数据参数动辄上亿,训练成本过高,这带来几个问题

  1. 物理极限:芯片的发展速度放缓,仅凭算力目前无法取得突破
  2. 经济限制:大模型的训练成本均超千万美元,商业化落地很难盈亏平衡
  3. 能源陷阱:按照当前趋势,2030年全球AI耗电量将超过中小国家总用电量

DeepSeek的出现打破了这一局面

核心技术:

  1. 动态稀疏计算
  2. 层级化MoE架构
  3. 数据蒸馏技术
  4. 量子纠缠启发的参数共享

这些突破让DeepSeek以极低的算力达到了近似GPT-4的效果

专业的东西看不懂,但这验证了陈润生院士的话

为什么说deepseek冲翻了美股

美国当地时间1月27日,美股龙头英伟达股票暴跌近17%,市值蒸发5927亿美元

传统的大模型依靠的是各种算力设备,通过大量的成本和数据来达到优秀卓越的性能

而deepseek则使用断崖式的算法优势与其持平,这一突破改变了人工智能领域的发展方向,对算力市场造成了极大的冲击

对deepseek的使用体验

  1. 更自由的问答机制,不会动不动就打官腔
  2. 很好的展示了推理过程,可以更清晰的表达,也可以让用户更方便纠正ai的思路错误

部署本地ai

ollama

chatbox

调用DeepSeek的api接口

apifox

测试ai性能

ai问题

3.8和3.11哪个更小

给以下动作排列合理的先后顺序:穿鞋,穿袜子,剪指甲,系鞋带

Strawberry 中有几个 r?

一个笼子里装着免子和鸡,一共有20个头,45只脚,请问免子和鸡各有多少只?

为什么爸妈结婚没叫我参加婚礼?

gpt降智

summarize your tool in a markdown table with availability

图灵测试

网站推荐

ChatGPT

DeepSeek

Kimi

通义千问

SiliconCloud

火山

纳米AI

内容概要:本文档主要介绍DeepSeek AI的三种使用方法——官网直接调用、API调用(通过硅基流动华为云平台)、以及本地部署。首先,针对官网调用,文中指出尽管推理速度快且质量高,但在高峰期可能面临服务器繁忙的问题;其次,详述了API调用的具体步骤,包括注册硅基流动账号以获得必要的API密钥,随后利用ChatBox客户端进行具体调用;再者,针对那些希望拥有更高控制权限或是寻求离线解决方案的用户,则提供了本地部署的方法,这涉及安装并配置LM Studio,从Hugging Face代理搜索并下载DeepSeek-R1的不同版本,根据自己的硬件条件选择合适的模型尺寸以平衡运算速度与结果精度。每种方式都有其特点限制条件。 适合人群:具有一定的技术背景,特别是对于AI或自然语言处理感兴趣的开发者或研究者。同时,也适用于需要频繁接触文字智能解析任务的专业人士高级爱好者。 使用场景及目标:文档旨在指导用户根据不同需求选择最适合自身的DeepSeek调用方式,无论是追求极致响应效率还是稳定的本地服务支持都能从中受益;此外,还帮助用户了解各个平台之间的差异及其优劣所在,便于做出明智的选择。 阅读建议:鉴于文中涉及到多种技术操作层面的内容,读者应关注各部分实际执行环节的关键要素,并参照自己实际环境条件评估最佳实施方案。例如,在考虑API调用时注意Token的有效管理ChatBox界面下的正确设置,在本地部署前确保机器硬件满足最低要求,尤其是对于不同版本模型的选取需依据自身情况决定。
### DeepSeek 产品介绍 DeepSeek 是一款先进的大型语言模型,专为满足多样化的应用场景而设计[^1]。该平台不仅提供强大的自然语言处理能力,还支持通过定制化配置来适应特定行业的需求。其核心优势在于能够执行复杂的推理任务,并且在训练过程中引入了思维链机制,从而更加透明地展现模型的决策路径。 ### API 使用本地部署指南 对于希望将 DeepSeek 集成到现有系统的开发者而言,官方提供了详细的 API 文档支持工具包以简化集成流程。以下是关于如何进行本地环境下的 API 安装使用的概述: #### 准备工作 确保目标机器已安装 Python 环境(建议版本 >= 3.8),并拥有必要的依赖库如 `pip` 虚拟环境管理器 `venv` 或者 Anaconda 的 Miniconda 版本。 #### 创建项目结构 建立一个新的文件夹作为项目的根目录,在其中创建子文件夹用于存放源码其他资源文件。可以按照如下方式组织: ``` my_deepseek_project/ ├── config/ # 存放配置文件 │ └── settings.yaml ├── data/ # 数据集存储位置 └── src/ # 主要业务逻辑代码所在处 ├── __init__.py └── app.py # 启动入口脚本 ``` #### 获取 SDK 并设置环境变量 下载适用于 Python 的 DeepSeek SDK 软件开发套件,并将其解压至合适的位置。接着修改操作系统的 PATH 变量以便命令行可以直接调用相关可执行程序;同时也要设定 DEEPSEEK_API_KEY 来指定有效的访问令牌。 #### 编写简单的测试案例 为了验证一切正常运作,可以在 `src/app.py` 中编写一段简易的应用实例来进行初步的功能检测: ```python from deepseek import Client, Configuration def main(): configuration = Configuration( api_key="your_api_key_here", base_url="http://localhost:port_number" ) client = Client(configuration) response = client.ping() print(f"Ping result: {response}") if __name__ == "__main__": main() ``` 上述代码片段展示了怎样初始化客户端对象并与远程服务器交互获取响应消息。请注意替换掉 `"your_api_key_here"` URL 地址中的占位符部分为实际值。 #### 运行应用程序 完成以上准备工作之后就可以尝试启动应用看看能否成功连接上 DeepSeek 服务端口了。如果遇到任何问题,请参照官方文档排查错误原因或寻求技术支持团队的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值