分别用正则运算和requests库两种方法爬取豆瓣电影TOP250

该博客介绍了如何使用Python的requests和BeautifulSoup库爬取豆瓣电影TOP250的电影信息,包括电影排名、片名、评分等,并将数据存储到Excel表格中。提供了两种不同的实现方式,一种是常规的HTML解析,另一种是正则表达式匹配。最后,代码示例展示了如何执行爬虫并保存数据。
摘要由CSDN通过智能技术生成

今天我们来尝试用python爬虫爬取豆瓣TOP250电影的相关信息到Excel表格上面

首先是requests库法

# -*- coding = utf-8 -*-
# @Time: 2022/12/16 13:35
# @File : 爬虫2.py
# @Software : PyCharm
import requests
from bs4 import BeautifulSoup
import pandas as pd
# 构造分页数字列表
page_indexs = range(0, 250, 25)
def download_all_htmls():
    htmls = []
    for idx in page_indexs:
        url = f"https://movie.douban.com/top250?start={idx}&filter="
        print("craw html:", url)
        r = requests.get(url,
                         headers={"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"})
        if r.status_code != 200:
            raise Exception("error")
        htmls.append(r.text)
    return htmls
# 执行爬取
htmls = download_all_htmls()
def parse_single_html(html):
    """
    解析单个HTML,得到数据
    @return list({"link", "title", [label]})
    """
    soup = BeautifulSoup(html, 'html.parser')
    article_items = (
        soup.find("div", class_="article")
        .find("ol", class_="grid_view")
        .find_all("div", class_="item")
    )
    datas = []
    for article_item in article_items:
        rank = article_item.find("div", class_="pic").find("em").get_text()
        info = article_item.find("div", class_="info")
        title = info.find("div", class_="hd").find("span", class_="title").get_text()
        stars = (
            info.find("div", class_="bd")
            .find("div", class_="star")
            .find_all("span")
        )
        rating_star = stars[0]["class"][0]
        rating_num = stars[1].get_text()
        comments = stars[3].get_text()

        datas.append({
            "排名": rank,
            "片名": title,
            "评星": rating_star.replace("rating", "").replace("-t", ""),
            "评分": rating_num,
            "人数": comments.replace("人评价", "")
        })
    return datas


import pprint

pprint.pprint(parse_single_html(htmls[0]))
# 执行所有的HTML页面的解析
all_datas = []
for html in htmls:
    all_datas.extend(parse_single_html(html))
df = pd.DataFrame(all_datas)
df.to_excel("豆瓣电影TOP250.xlsx")

注意 :如果按照以上代码输出后依然报错,请在PyCharm中安装openpyxl,如果还有问题,我们可以在评论区讨论,也可以私信我

然后就是用正则运算爬取页面信息

# -*- coding = utf-8 -*-
# @Time: 2022/12/19 16:07
# @File : 爬虫4.py
# @Software : PyCharm
# -*- codeing =utf-8 -*-
#################引入模块#################
from bs4 import BeautifulSoup  # 网页解析,获取数据
import re  # 正则表达式,
import urllib.request, urllib.error  # 制定URL,获取网页数据
import xlwt  # 进行excel制作

#################定义变量#################
findLink = re.compile(r'<a href="(.*?)">')  # 创建正则表达式对象,影片链接规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)  # 图片链接规则
findTitle = re.compile(r'<span class="title">(.*)</span>')  # 影片片名
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>')  # 评价人数
findInq = re.compile(r'<span class="inq">(.*)</span>')  # 找到概况
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)  # 相关内容


#################定义方法#################
def main():
    baseurl = "https://movie.douban.com/top250?start="
    # 1.爬取网页
    dataList = getData(baseurl)
    savepath = "豆瓣电影Top250.xls"
    # 3.保存数据
    saveData(dataList, savepath)


"""爬取网页"""


def getData(baseurl):
    dataList = []  # 列表,存储网页获取的所有数据
    for i in range(0, 10):  # 调用获取页面信息的函数10次
        url = baseurl + str(i * 25)  # 循环每页的网址
        html = askURL(url)  # 保存获取到的网页源码
        # 2.解析数据
        soup = BeautifulSoup(html, "html.parser")  # 使用html解析器
        for item in soup.find_all('div', class_="item"):  # 找到所有class是item的div
            data = []  # 保存一部电影的所有信息
            item = str(item)  # 转换成字符串
            link = re.findall(findLink, item)[0]  # re库通过正则表达式查找指定的字符串,获取影片链接
            data.append(link)
            imgSrc = re.findall(findImgSrc, item)[0]  # 查询图片
            data.append(imgSrc)
            titles = re.findall(findTitle, item)  # 查询题目
            if (len(titles) == 2):
                ctitle = titles[0]
                data.append(ctitle)  # 添加中文名
                otitle = titles[1].replace("/", "")  # 去掉无关的服号
                data.append(otitle)  # 添加外文名
            else:
                data.append(titles[0])
                data.append(' ')  # 外文名留空
            rating = re.findall(findRating, item)[0]
            data.append(rating)  # 添加评分
            judgeNum = re.findall(findJudge, item)[0]
            data.append(judgeNum)
            inq = re.findall(findInq, item)
            if len(inq) != 0:
                inq = inq[0].replace("。", "")  # 去掉句号
                data.append(inq)  # 添加概况
            else:
                data.append(" ")  # 留空
            bd = re.findall(findBd, item)[0]
            bd = re.sub('<br(\s+)?/>(\s+)?', " ", bd)  # 去掉<br/>
            bd = re.sub('/', " ", bd)
            data.append(bd.strip())  # 去掉空格
            dataList.append(data)  # 放入一部电影信息
    print(dataList)
    return dataList


"""得到指定一个URL的网页内容"""


def askURL(url):
    head = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.56 Safari/537.36 Edg/83.0.478.3"}  # 用户代理,发送请求时把python程序伪装成浏览器,蒙混过豆瓣服务器
    request = urllib.request.Request(url, headers=head)
    html = ""
    try:
        response = urllib.request.urlopen(request)
        html = response.read().decode("utf-8")
    except urllib.error.URLError as e:
        if hasattr(e, "code"):  # 判断e这个对象里是否包含code这个属性
            print(e.code)  # 打印错误代码
        if hasattr(e, "reason"):
            print(e.reason)  # 打印错误原因
    return html


"""保存数据"""


def saveData(dataList, savePath):
    book = xlwt.Workbook(encoding="utf-8")  # 创建workbook对象
    sheet = book.add_sheet('豆瓣电影Top')  # 创建工作表
    col = ("电影详情链接", "图片链接", "影片中文名", "影片外国名", "评分", "评价数", "概况", "相关信息")
    for i in range(0, 8):
        sheet.write(0, i, col[i])  # 列名
    for i in range(0, 250):
        print("第%d条" % (i + 1))
        data = dataList[i]
        for j in range(0, 8):
            sheet.write(i + 1, j, data[j])  # 数据
    book.save(savePath)


#################主程序#################
if __name__ == "__main__":
    main()
    print("爬取完毕!")

当然啦,方法肯定不止这两种,如果大家有其他方法,欢迎在评论区留言一起讨论

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小周不想卷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值