今天我们来尝试用python爬虫爬取豆瓣TOP250电影的相关信息到Excel表格上面
首先是requests库法
# -*- coding = utf-8 -*-
# @Time: 2022/12/16 13:35
# @File : 爬虫2.py
# @Software : PyCharm
import requests
from bs4 import BeautifulSoup
import pandas as pd
# 构造分页数字列表
page_indexs = range(0, 250, 25)
def download_all_htmls():
htmls = []
for idx in page_indexs:
url = f"https://movie.douban.com/top250?start={idx}&filter="
print("craw html:", url)
r = requests.get(url,
headers={"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"})
if r.status_code != 200:
raise Exception("error")
htmls.append(r.text)
return htmls
# 执行爬取
htmls = download_all_htmls()
def parse_single_html(html):
"""
解析单个HTML,得到数据
@return list({"link", "title", [label]})
"""
soup = BeautifulSoup(html, 'html.parser')
article_items = (
soup.find("div", class_="article")
.find("ol", class_="grid_view")
.find_all("div", class_="item")
)
datas = []
for article_item in article_items:
rank = article_item.find("div", class_="pic").find("em").get_text()
info = article_item.find("div", class_="info")
title = info.find("div", class_="hd").find("span", class_="title").get_text()
stars = (
info.find("div", class_="bd")
.find("div", class_="star")
.find_all("span")
)
rating_star = stars[0]["class"][0]
rating_num = stars[1].get_text()
comments = stars[3].get_text()
datas.append({
"排名": rank,
"片名": title,
"评星": rating_star.replace("rating", "").replace("-t", ""),
"评分": rating_num,
"人数": comments.replace("人评价", "")
})
return datas
import pprint
pprint.pprint(parse_single_html(htmls[0]))
# 执行所有的HTML页面的解析
all_datas = []
for html in htmls:
all_datas.extend(parse_single_html(html))
df = pd.DataFrame(all_datas)
df.to_excel("豆瓣电影TOP250.xlsx")
注意 :如果按照以上代码输出后依然报错,请在PyCharm中安装openpyxl,如果还有问题,我们可以在评论区讨论,也可以私信我
然后就是用正则运算爬取页面信息
# -*- coding = utf-8 -*-
# @Time: 2022/12/19 16:07
# @File : 爬虫4.py
# @Software : PyCharm
# -*- codeing =utf-8 -*-
#################引入模块#################
from bs4 import BeautifulSoup # 网页解析,获取数据
import re # 正则表达式,
import urllib.request, urllib.error # 制定URL,获取网页数据
import xlwt # 进行excel制作
#################定义变量#################
findLink = re.compile(r'<a href="(.*?)">') # 创建正则表达式对象,影片链接规则
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S) # 图片链接规则
findTitle = re.compile(r'<span class="title">(.*)</span>') # 影片片名
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人评价</span>') # 评价人数
findInq = re.compile(r'<span class="inq">(.*)</span>') # 找到概况
findBd = re.compile(r'<p class="">(.*?)</p>', re.S) # 相关内容
#################定义方法#################
def main():
baseurl = "https://movie.douban.com/top250?start="
# 1.爬取网页
dataList = getData(baseurl)
savepath = "豆瓣电影Top250.xls"
# 3.保存数据
saveData(dataList, savepath)
"""爬取网页"""
def getData(baseurl):
dataList = [] # 列表,存储网页获取的所有数据
for i in range(0, 10): # 调用获取页面信息的函数10次
url = baseurl + str(i * 25) # 循环每页的网址
html = askURL(url) # 保存获取到的网页源码
# 2.解析数据
soup = BeautifulSoup(html, "html.parser") # 使用html解析器
for item in soup.find_all('div', class_="item"): # 找到所有class是item的div
data = [] # 保存一部电影的所有信息
item = str(item) # 转换成字符串
link = re.findall(findLink, item)[0] # re库通过正则表达式查找指定的字符串,获取影片链接
data.append(link)
imgSrc = re.findall(findImgSrc, item)[0] # 查询图片
data.append(imgSrc)
titles = re.findall(findTitle, item) # 查询题目
if (len(titles) == 2):
ctitle = titles[0]
data.append(ctitle) # 添加中文名
otitle = titles[1].replace("/", "") # 去掉无关的服号
data.append(otitle) # 添加外文名
else:
data.append(titles[0])
data.append(' ') # 外文名留空
rating = re.findall(findRating, item)[0]
data.append(rating) # 添加评分
judgeNum = re.findall(findJudge, item)[0]
data.append(judgeNum)
inq = re.findall(findInq, item)
if len(inq) != 0:
inq = inq[0].replace("。", "") # 去掉句号
data.append(inq) # 添加概况
else:
data.append(" ") # 留空
bd = re.findall(findBd, item)[0]
bd = re.sub('<br(\s+)?/>(\s+)?', " ", bd) # 去掉<br/>
bd = re.sub('/', " ", bd)
data.append(bd.strip()) # 去掉空格
dataList.append(data) # 放入一部电影信息
print(dataList)
return dataList
"""得到指定一个URL的网页内容"""
def askURL(url):
head = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.56 Safari/537.36 Edg/83.0.478.3"} # 用户代理,发送请求时把python程序伪装成浏览器,蒙混过豆瓣服务器
request = urllib.request.Request(url, headers=head)
html = ""
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8")
except urllib.error.URLError as e:
if hasattr(e, "code"): # 判断e这个对象里是否包含code这个属性
print(e.code) # 打印错误代码
if hasattr(e, "reason"):
print(e.reason) # 打印错误原因
return html
"""保存数据"""
def saveData(dataList, savePath):
book = xlwt.Workbook(encoding="utf-8") # 创建workbook对象
sheet = book.add_sheet('豆瓣电影Top') # 创建工作表
col = ("电影详情链接", "图片链接", "影片中文名", "影片外国名", "评分", "评价数", "概况", "相关信息")
for i in range(0, 8):
sheet.write(0, i, col[i]) # 列名
for i in range(0, 250):
print("第%d条" % (i + 1))
data = dataList[i]
for j in range(0, 8):
sheet.write(i + 1, j, data[j]) # 数据
book.save(savePath)
#################主程序#################
if __name__ == "__main__":
main()
print("爬取完毕!")
当然啦,方法肯定不止这两种,如果大家有其他方法,欢迎在评论区留言一起讨论
该博客介绍了如何使用Python的requests和BeautifulSoup库爬取豆瓣电影TOP250的电影信息,包括电影排名、片名、评分等,并将数据存储到Excel表格中。提供了两种不同的实现方式,一种是常规的HTML解析,另一种是正则表达式匹配。最后,代码示例展示了如何执行爬虫并保存数据。
5878

被折叠的 条评论
为什么被折叠?



