目录
题目描述
子集和问题的一个实例为〈S,t〉。其中,S={ x1, x2,…, xn}是一个正整数的集合,c是一个正整数。子集和问题判定是否存在S的一个子集S1,使得子集S1和等于c。
对于给定的正整数的集合S={ x1, x2,…, xn}和正整数c,编程计算S 的一个子集S1,使得子集S1和等于c。
输入
文件第1行有2个正整数n和c,n表示S的个数,c是子集和的目标值。接下来的1 行中,有n个正整数,表示集合S中的元素。
输出
程序运行结束时,将子集和问题的解。当问题无解时,输出“No Solution!”。
样例输入
5 10 2 2 6 5 4
样例输出
2 2 6
数据范围限制
观察与分析
我们需要仔细观察并注意题目意思
1.首先,我们能够注意到:“集合”;
集合是什么?我们可以参考数学集合_360百科。
2.了解“集合”的概念以后,再来大致看要求些什么;
最后,总结出来:
题目意思:
编程计算S 的一个子集S1,使得子集S1和等于c。
解题思路与代码
第一次分析与提交结果:
只有枚举的方法,所以WA+TLE;
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=10001;
int n,c,a[maxn],s,bj[maxn],flag;
void dg(int x)
{
if(x==n)
{
if(s==c&&!flag)
{
flag=1;
for(int i=1;i<=n;i++)
{
if(bj[i]) printf("%d ",a[i]);
}
return;
}
}
else
{
s+=a[x];
bj[x]=1;
dg(x+1);
s-=a[x];
bj[x]=0;
dg(x+1);
}
}
int main()
{
scanf("%d%d",&n,&c);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
dg(0);
if(!flag)
{
printf("No Solution!");
return 0;
}
return 0;
}
(只过了2个测试点......)

这篇博客主要介绍了如何使用回溯算法解决子集和问题,详细解析了题目要求,逐步展示了解题思路和代码实现过程。博主通过三次尝试,最终采用带有剪枝策略的枚举方法实现了AC( Accepted ),并分享了错误分析和解决方案。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



