【题目】
【参考文章】
【思路解析】
最开始我的思路居然是二分,因为想着在一个区间内寻找答案用二分来着~~,纯纯**。
其实使用差分数组非常容易实现。
首先我们需要知道思路:
非零段可以理解为孤立的岛屿,不同的岛屿之间用 0 00 分隔开。
选择一个正整数p pp,将所有小于p pp的数都变为 0 00 ,可以理解为海平面上涨到 p pp 的位置,p pp 以下的部分都被淹没,求孤立岛屿数最大是多少。
可以先考虑 p = 10001 p=10001p=10001 的情况:所有数字都被海水淹没了,显然只有 0 00 个岛屿。然后海平面逐渐下降,观察岛屿数量的变化。可以看出:每当一个凸峰出现,岛屿数就多了一个;而每当一个凹谷出现,原本相邻的两个岛屿就被这个凹谷连接在了一起,岛屿数减少一个。
因此可以考虑差分。c n t [ i ] cnt[i]cnt[i] 表示海平面下降到 i ii 时,答案的变化量。
凸峰点和凹谷点的判断需要注意平面(如 1 2 2 1 )的存在:若连续一段数字相同,可以把他们合并成一个点(1 2 1),这样对答案不会产生影响,可以使用 std::unique() 函数来去掉相邻重复元素。
版权声明:本文为CSDN博主「隔壁李叟」的原创文章
用岛屿的比喻非常好理解,我的想法和他差不多(水淹山)
问题是如何理解这里为什么要用到差分数组。
应该很多人和我一样,只知道差分数组使用来求一个数组在一个区间段的变化,用来减少时间复杂度的,但是这只是差分数组的应用,而其真正的本质是:用一个数组,描述目标数组的相邻元素变化趋势(差分数组的构造就是如此)。这一题用的就是差分数组的定义,而非应用,所以初学者很难想到使用差分数组。
【AC代码】
(注释才是精华哈哈哈
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=5e5+10;
const int HIGH=1e4+10;
int n,ans;
int a[MAXN];
int b[HIGH]; /* 差分数组 */
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
a[0]=a[n+1]=0; /* 为了便于判断1和n+1是不是山峰 */
/* 必须要进行相邻元素去重 否则非常难判断山峰 */
n=unique(a,a+n+2)-a-1; //更新a的size
for(int i=1;i<n;i++){
if(a[i]>a[i-1]&&a[i]>a[i+1])
/*如果i是一个山峰 那么当水降到a[i]时 ans++*/
b[a[i]]++;
else if(a[i]<a[i-1]&&a[i]<a[i+1])
/*相反*/
b[a[i]]--;
}
int sum=0,ans=0;
/* 注意水是从高往低降的 所以high从1e4遍历到1 (后缀和) */
for(int h=1e4;h>=1;h--){
/* sum其实是差分数组b的还原数组 只不过不按照数组的形式表现 */
/* 因为我们只需要知道原数组中的最大值 */
sum+=b[h];
ans=max(ans,sum);
}
cout<<ans<<endl;
return 0;
}

文章讲述了如何使用差分数组解决非零段划分问题,通过理解岛屿概念和水位变化,利用凸峰凹谷判断,以及std::unique函数去除重复,展示了C++中差分数组的本质应用。
1828

被折叠的 条评论
为什么被折叠?



