联邦学习non-IID(非独立同分布)(分布差很大)的几种情况

第一种:Feature Distribution Skew(特征分布偏差)标签相同但是分布不同

尽管数据中心的标签分布类似,但特征分布不同。例如,一个数据中心包含的是中华田园猫和中华田园犬的图片,而另一个数据中心包含的是波斯猫和哈士奇的图片。这些不同种类的猫和狗的外观差异较大,会导致模型难以在不同数据中心之间泛化。

①小张:有波斯猫和哈士奇狗

②小王:有田园猫和中华田园狗

虽然标签都是狗,但是它们不同,如果是iid,是在同一种猫或者狗中进行的采样

第二种:Label Distribution Skew(标签分布偏差)(各数据中心之间的标签种类不同)

指不同客户端或数据中心的标签类别不同。例如,一个数据中心的数据集中只有猫和狗,另一个数据中心则只有飞机和汽车,类别之间完全不同。这会导致各数据中心的数据类别不一致,从而影响模型在多样化数据上的表现。

①小张:只有猫

②小王:只有狗

③小明:只有虎

第三种:Label Distribution Imbalance(标签分布不平衡)(每个数据中心内部的标签比例不均匀)

指在每个客户端或数据中心内部,标签类别的比例不平衡。例如&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值