第一种:Feature Distribution Skew(特征分布偏差)标签相同但是分布不同
尽管数据中心的标签分布类似,但特征分布不同。例如,一个数据中心包含的是中华田园猫和中华田园犬的图片,而另一个数据中心包含的是波斯猫和哈士奇的图片。这些不同种类的猫和狗的外观差异较大,会导致模型难以在不同数据中心之间泛化。
①小张:有波斯猫和哈士奇狗
②小王:有田园猫和中华田园狗
虽然标签都是狗,但是它们不同,如果是iid,是在同一种猫或者狗中进行的采样
第二种:Label Distribution Skew(标签分布偏差)(各数据中心之间的标签种类不同)
指不同客户端或数据中心的标签类别不同。例如,一个数据中心的数据集中只有猫和狗,另一个数据中心则只有飞机和汽车,类别之间完全不同。这会导致各数据中心的数据类别不一致,从而影响模型在多样化数据上的表现。
①小张:只有猫
②小王:只有狗
③小明:只有虎
第三种:Label Distribution Imbalance(标签分布不平衡)(每个数据中心内部的标签比例不均匀)
指在每个客户端或数据中心内部,标签类别的比例不平衡。例如&#x
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



