调整扩展Ubuntu现有分区(超级详细,适合硬盘没有完全挂载利用) 通过上述步骤,你可以成功扩展 Ubuntu 的根分区。关键在于确认剩余空间、扩展 LVM 逻辑卷和文件系统,以及在操作前做好数据备份。
使用U-net系列进行超声图像分割(轻量化) 基础U-net模型,VGG风格Encoder,可迁移PyTorch VGG16模型权重,Maxpooling下采样,UpsamplingBilinear上采样;基础U-net模型,VGG风格Encoder,Conv下采样,UpsamplingBilinear上采样;Attention-Unet,VGG风格Encoder,Maxpooling下采样,UpsamplingBilinear上采样;
AI-RecommenderSystem(最全专家推荐系统整理) 关于要整理的模型和技术,我这里按照自己的理解做了一个思维导图:“热追"推荐算法的特色是从实际应用的角度去梳理推荐系统领域目前常用的一些关键技术,主要包括召回粗排,精排,重排以及冷启动,这几个差不多撑起了工业界推荐系统的流程。
所有开源大语言模型完整列表(最全!!可部署,建议收藏) Large Language Model (LLM) 即大规模语言模型,是一种基于深度学习的自然语言处理模型,它能够学习到自然语言的语法和语义,从而可以生成人类可读的文本。所谓"语言模型",就是只用来处理语言文字(或者符号体系)的 AI 模型,发现其中的规律,可以根据提示 (prompt),自动生成符合这些规律的内容。LLM 通常基于神经网络模型,使用大规模的语料库进行训练,比如使用互联网上的海量文本数据。
分类模型在新生儿肺部超声中的应用:ResNet152与EfficientNet-B7 新生儿肺部超声是一种有效的影像学检查手段,可用于诊断新生儿呼吸系统疾病,如新生儿呼吸窘迫综合征、肺炎和气胸等。与传统的胸部X光相比,超声检查具有无辐射、实时性好、可床旁操作等优点,特别适合新生儿的检查需求。ResNet(Residual Network)是由何凯明等人提出的一种深度卷积神经网络结构。ResNet152是该系列中的一种变体,具有152层深度。其核心思想是引入残差连接(residual connection),通过这种方式解决了深层网络训练中的梯度消失问题。
使用免费算力对gemma进行微调(以gemma 2b的LORA微调为例) Gemma是Google推出的一系列轻量级、最先进的开放模型,基于创建Gemini模型的相同研究和技术构建。提供了 2B 和 7B 两种不同规模的版本,每种都包含了预训练基础版本和经过指令优化的版本。所有版本均可在各类消费级硬件上运行,无需数据量化处理,拥有高达 8K tokens 的处理能力:它们是文本到文本的、仅解码器的大型语言模型,提供英语版本,具有开放的权重、预训练的变体和指令调优的变体。Gemma模型非常适合执行各种文本生成任务,包括问答、摘要和推理。
本地浏览器远程代替Linux服务器访问网页(以登录校园网提交表单为例) 试了很多方法(网上方法都试过了,后来自己想的办法)通过以上步骤,我们成功地利用SSH端口转发功能实现了在本地浏览器中远程访问服务器网页的目标。这种方法不仅简单方便,而且安全可靠,适用于许多实际场景中的远程访问需求。
YOLOv9:物体检测技术的飞跃发展(原理+训练+验证+查看训练数据) 基于深度学习和计算机视觉领域的尖端技术,在速度和准确性方面具有无与伦比的性能。其流线型设计使其适用于各种应用,并可轻松适应从边缘设备到云 API 等不同硬件平台。
一分钱不花!手把手教你部署Google最强开源AI大模型Gemma教程 一分钱不花!本地部署Google最强开源AI大模型Gemma教程半个多月前,谷歌搞了一波突然袭击,毫无预兆地发布了新一代AI模型Gemma,并宣称这是全球性能最强大的轻量级开源系列模型。