第一部分:数组涵义
利用f[i]数组来记录第i个数为结尾的最长子序列有多长,刚开始的时候,每一个f[i]都为1;
利用c[i]数组来记录最长子序列在原来a[]数组的下标;
利用a[]数组的来记录刚开始的数据;
第二部分:主体思想
枚举每一个位置的a数组,当中再每一次都从一号位置开始枚举到i,当a[j]<a[i]时候,判断f[i]=max(f[j]+1,f[i]),f[j]+1的涵义是第j个数为结尾的最长子序列加1,与原来f[i]比较,大就更新;
代码如下:
const int N=1e5+10,INF=0x3f3f3f3f;
int c[N],a[N],f[N];
int main()
{
int n,maxx=-INF;//maxx是最长子序列的长度;
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
int k;
for(int i=1;i<=n;i++)
{
f[i]=1;
for(int j=1;j<i;j++)
{
if(a[j]<a[i])
{
f[i]=max(f[j]+1,f[i]);
}
}
if(f[i]>maxx)
{
maxx=f[i];//每一次更新maxx;
k=i;//记录最长子序列的在原来数组a的下标;
}
}
//遇到题目不同选择部分
int q=0,i=k-1,m=maxx;
c[q++]=k;//将最长子序列的下标记录下来;
while(m>1)
{
if(f[i]==m-1&&a[i]<a[k])//当f[i]==m-1时候指现在最长子序列后面必须是m-1;
{
c[q++]=i;
k=i;//更新现在最长子序列的下标
m--;
}
i--;//询问下一个;
}
for(int i=0;i<q;i++)
{
cout<<a[c[i]]<<" ";
}
return 0;
}
本文介绍了一种利用动态规划解决数组中寻找以每个数为结尾的最长递减子序列的问题,通过f[i]数组存储以i结尾的最长子序列长度,c[i]数组记录相应子序列在原数组中的起始位置。
399

被折叠的 条评论
为什么被折叠?



