动态规划——线性 dp (最长上升子序列 LIS )

本文介绍了一种利用动态规划解决数组中寻找以每个数为结尾的最长递减子序列的问题,通过f[i]数组存储以i结尾的最长子序列长度,c[i]数组记录相应子序列在原数组中的起始位置。
摘要由CSDN通过智能技术生成

第一部分:数组涵义


利用f[i]数组来记录第i个数为结尾的最长子序列有多长,刚开始的时候,每一个f[i]都为1;

利用c[i]数组来记录最长子序列在原来a[]数组的下标;

利用a[]数组的来记录刚开始的数据;


第二部分:主体思想


枚举每一个位置的a数组,当中再每一次都从一号位置开始枚举到i,当a[j]<a[i]时候,判断f[i]=max(f[j]+1,f[i]),f[j]+1的涵义是第j个数为结尾的最长子序列加1,与原来f[i]比较,大就更新;

代码如下:

const int N=1e5+10,INF=0x3f3f3f3f;
int c[N],a[N],f[N];
int main()
{
    int n,maxx=-INF;//maxx是最长子序列的长度;
    cin>>n;
    for(int i=1;i<=n;i++)	cin>>a[i];
    
    int k;
    for(int i=1;i<=n;i++)
    {
        f[i]=1;
        for(int j=1;j<i;j++)
        {
            if(a[j]<a[i])
            {
                f[i]=max(f[j]+1,f[i]);
            }
        }
        
        
        if(f[i]>maxx)
        {
            maxx=f[i];//每一次更新maxx;
            
            k=i;//记录最长子序列的在原来数组a的下标;
        }
        
    }
   //遇到题目不同选择部分
    int q=0,i=k-1,m=maxx;
    c[q++]=k;//将最长子序列的下标记录下来;
    while(m>1)
    {
        if(f[i]==m-1&&a[i]<a[k])//当f[i]==m-1时候指现在最长子序列后面必须是m-1;
        {
            c[q++]=i;
            k=i;//更新现在最长子序列的下标
            m--;
        }
        i--;//询问下一个;
    }
    for(int i=0;i<q;i++)
    {
        cout<<a[c[i]]<<" ";
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值