近日博主在Windows环境下配置Qwen模型的环境下载Pytorch遇到了一些问题,希望能给遇到同样问题的老哥们带来帮助。
我们都知道下载Pytorch这个包可以去到官网根据你的CUDA版本以及环境找到下载指令,例如博主要下载的就是windows环境,CUDA为12.1的pytorch.
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
但是值得注意的是,在windows中无论你有没有配置conda镜像环境,它都将在后面的官方链接中拉取,非常的慢,你没下完他就会报错超时了
有没有什么方法可以让它下载变快呢?
有的老哥想到了,在后面添加镜像。
这里添加的是清华镜像
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 -i https://pypi.tuna.tsinghua.edu.cn/simple
细心的老哥会发现,两次下载的大小好像不一样,一个2.4G,一个200MB???
没错,加了镜像源下载的居然是无显卡版的。
如果你进行torch.cuda.is_available()将会显示:False
博主也尝试过按照阿里的镜像站提示修改后面的下载链接
pip3 install torch torchvision torchaudio --index-url https://mirrors.aliyun.com/pytorch-wheels/cu121
但结果是未能找到我所需要的版本。(服啦!)
下载pytorch居然让人这么的无语(QAQ),那有没有什么方法让我们快速一点下载显卡版的pytorch呢?
目前我只能想到去官网直接下载包,进行pip本地安装。
以博主的需求的版本pyhon3.8,cuda12.1为例子,你要找到3个文件进行下载安装:torch-2.2.1+cu121-cp38-cp38-win_amd64.whl,torchaudio-2.2.1+cu121-cp38-cp38-win_amd64.whl,torchvision-0.17.1+cu121-cp38-cp38-win_amd64.whl,也就是:torch、 torchvision 、 torchaudio。
文件名虽然很长,但它表示的含义很清晰,让我来介绍一下:
cu:代表我们所需的cuda版本,cu121,就是cuda12.1。
cp:代表我们的python环境版本 py38就是python3.8。
win:当然代表的就是我们的系统了,win指的就是Windows。
这里给出下载链接,我们可以对链接进行修改,快速的找到所需的文件。
修改链接中的cu可以找到对应的cuda版本,把链接中的torch 改成 torchvision / torchaudio,你就能找到 torchvision / torchaudio 的包
下载速度还不错,可能我进行了科学上网?
下载好了后,我们就可以通过pip进行本地安装啦。
格式为:pip install 包whl的物理路径;
例如:
pip install "C:\Users\taishi\Downloads\torch-2.2.1-cu121_1728825422927\torch-2.2.1+cu121-cp38-cp38-win_amd64.whl"
可以看到成功安装
当安装好torch、 torchvision 、 torchaudio这三个包以后,我们再进行是否可以连接显卡检测。
torch.cuda.is_available()
是True,大功告成!
好啦,这篇关于pytorch下载的博客就这么结束了,有更好的方法,或我的文章中有了什么问题希望大家一起留言指出。