汉诺塔问题

1.代码

#include <stdio.h>

/**
 * Hanoi.
 */
void hanoi(int paraN, char paraSource, char paraDestination, char paraTransit) {
	if (paraN <= 0) {
		return;
	} else {
		hanoi(paraN - 1, paraSource, paraTransit, paraDestination);
		printf("%c -> %c \r\n", paraSource, paraDestination);
		hanoi(paraN - 1, paraTransit, paraDestination, paraSource);
	}// Of if
}// Of hanoi

/**
 * Test the hanoi function.
 */
void hanoiTest() {
    printf("---- addToTest begins. ----\r\n");

	printf("2 plates\r\n");
	hanoi(2, 'A', 'B', 'C');

	printf("3 plates\r\n");
	hanoi(3, 'A', 'B', 'C');

    printf("---- addToTest ends. ----\r\n");
}// Of addToTest

/**
 The entrance.
 */
void main() {
	hanoiTest();
}// Of main

2.运行结果

---- addToTest begins. ----
2 plates
A -> C
A -> B
C -> B
3 plates
A -> B
A -> C
B -> C
A -> B
C -> A
C -> B
A -> B
---- addToTest ends. ----

--------------------------------
Process exited after 0.1326 seconds with return value 0

请按任意键继续. 


递归实现汉诺塔问题:

(1)对于确定的移动步骤(盘子数为1),只需要输出移动路径即可;

(2)对于不确定的移动步骤(盘子数>1),需要仿照之前问题进行三步拆解,其中第二步由于是移动了一个盘子,直接输出移动路径即可。

1.自项向下,逐渐求精;

  “”自顶向下”就是将复杂的问题或是大的问题划分为小问题,先找出问题的关键所在,然后用精确的思维定性、定量地去描述问题。而“逐渐求精”则是将现实世界的问题经抽象转化为逻辑空间或求解空间的问题。复杂问题经抽象化处理变为相对比较简单的问题。经若干步抽象的精化处理,最后到求解域中只是比较简单的编程问题。

解决汉诺塔问题即为,把圆盘从下面开始按大小顺序重新摆放在另一根柱子上,并且规定在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。对ABC三柱第一步是把前n-1个从A移到B,最后一次是把n移到C,第二步是把n-1个从B移到C,最后一次是把第1个移到C也就是终结条件。

2.函数调用,递归和分治;

解决汉诺塔问题需要调用函数hanoi(n,a,b,c);

第一步,执行判断语句,根据n的值进入else执行

第二步,执行hanoi(n-1,a,c,b);这时是调用函数本身,也就是所谓的递归了,你看传入的值n-1,相当于传入n=6,还有a,c,b,的值,这个要注意顺序,在调用的时候a,c,b的值是第一次传入的值

第三步,执行hanoi(int n,char a,char b,char c)函数,直到n=1。

3.形参和实参;

 在函数调用过程中,我们使用形参来表示函数的输入参数,而实参则是在函数调用时提供的具体数值。在汉诺塔问题中,形参 n、a、b 和 c 分别表示要移动的圆盘数和三个柱子。在函数调用时,我们需要提供实际的圆盘数和三个柱子的具体名称,如 hanoi(3, ‘A’, ‘B’, ‘C’)。

4.有意义、规范的标识符:

  在编写程序时,使用有意义、规范的标识符更方便理解使用。在汉诺塔问题中,我们要尽量使用有意义的变量名和函数名,如 n、a、b、c 和 hanoi()。这些标识符可以更好地表达程序的含义,方便阅读和理解。

5..时间复杂度:

  汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。(摘自百度百科)\n\n所以我们假设有A,B,C三根柱子,现在要把A柱子上的n个圆盘移动到C柱子上。我们可以先考虑A柱子上的n-1个圆盘,将他们先借用C柱子移动到B柱子上,假设用时T(n-1),然后我们把A柱子上剩下的哪一个圆盘直接移动到C柱子上,最后在将B柱子上n-1个圆盘通过A柱子移动到C柱子上,用时T(n-1)。我们假设移动n个圆盘用时T(n),则由推导显然有T(n)=2*T(n-1)+1。当问题缩减至A柱子上只有一个圆盘时,将它移动到C柱子耗时T(1) = 1,则根据上述推导可以得出汉诺塔问题递归算法的时间复杂度为O(2^n)。

6.递归栈:

  递归函数的调用过程需要使用递归栈来保存每个函数调用的状态。在汉诺塔问题中,每个递归调用会创建一个新的函数调用帧,并将其压入递归栈中。当递归调用返回时,对应的函数调用帧会被弹出,恢复到上一层调用的状态。因此,在解决汉诺塔问题的过程中,递归栈的深度等于递归调用的层数,即 n。

7.空间复杂度:

  汉诺塔问题的空间复杂度为 O(n),其中 n 是圆盘的数量。这是因为在解决问题的过程中,我们需要使用一个递归栈来保存每个递归调用的状态。由于递归栈的深度等于递归调用的层数,因此空间复杂度为 O(n)。除了递归栈之外,我们还需要使用一些额外的变量来保存问题的状态,但这些变量的数量与圆盘的数量无关,因此不会影响空间复杂度。
 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值