动态规划 之 数组长度加长规避初始化

文章目录

在动态规划算法中,当我们的递推公式出现i-1,i-2的时候,一般的做法肯定是对于len(nums)<1,或者<2的时候特判一下
所以我们就采用将dp数组开长一点这样,就不用理初始化的问题,但是要根据题目的意思,对于dp数组本身的值进行赋值为0,还是一个很小的数
nums数组的下标是不用变化的

例子1:打家劫舍

198.打家劫舍
在这里插入图片描述

打家劫舍的递推公式是 dp[i] = max(dp[i-1]+nums[i],dp[i-2])
我们一般开的dp数组的长度是dp = [0]*len(nums),这样的话就会造成一些问题,就是当你的nums数组的长度小于3的时候,该公式使用不了,并且当你的数组的长度大于等于3的时候,前面的dp[0]和dp[1]的情况还需要特别判断

class Solution:
    def rob(self, nums: List[int]) -> int:
        # 可以使用记忆化搜索来做
        # dfs(i) = max(dfs(i-1),dfs(i-2)+nums[i])
        # 使用结果值作为返回值
        n = len(nums)
        dp = [0]*(n)
        if n <3:
            return max(nums)
        else:
            dp[0],dp[1] = nums[0],max(nums[0],nums[1])
            for i in range(2,n):
                dp[i] = max(dp[i-1],dp[i-2]+nums[i])
        return dp[n-1]

那么我们应该如何改进?
dp = [0]*(len(nums)+2),也就是说,将dp数组的长度开长,将对应的递推公式修改一下,也就是dp数组部分的下标都保证不会出现负数dp[i+2] = max(dp[i+1],dp[i]+nums[i])

class Solution:
    def rob(self, nums: List[int]) -> int:
        # 可以使用记忆化搜索来做
        # dfs(i) = max(dfs(i-1),dfs(i-2)+nums[i])
        # 使用结果值作为返回值
        n = len(nums)
        dp = [0]*(n+2)
        for i,c in enumerate(nums):
            # 原本是 dp[i] = max(dp[i-1],c+dp[i-2]),现在为了方便,dp方面每个都加上2
            dp[i+2] = max(dp[i+1],c+dp[i])
        return dp[-1]

例子2:最大子数组和

53.最大子数组和
在这里插入图片描述
在这里插入图片描述

这个递推公式是 dp[i] = max(dp[i-1]+nums[i],nums[i]),所以我们将dp数组开长一个,但是dp数组的初始值要赋值为一个很小的数,因为我们最后返回的是max(dp)

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        # 定义dp[i]为以nums[i]结尾的最大连续子数组的和
        # dp[i] = max(dp[i-1]+nums[i],nums[i])
        n = len(nums)
        # 初始值设置为最小的值,这样后面返回max的时候才不会影响
        dp = [-10**4]*(n)
        dp[0] = nums[0]
        for i in range(1,n):
            dp[i] =  max(dp[i-1]+nums[i],nums[i])
        return max(dp)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值