文章目录
在动态规划算法中,当我们的递推公式出现i-1,i-2的时候,一般的做法肯定是对于len(nums)<1,或者<2的时候特判一下
所以我们就采用将dp数组开长一点这样,就不用理初始化的问题,但是要根据题目的意思,对于dp数组本身的值进行赋值为0,还是一个很小的数
nums数组的下标是不用变化的
例子1:打家劫舍
198.打家劫舍

打家劫舍
的递推公式是 dp[i] = max(dp[i-1]+nums[i],dp[i-2])
我们一般开的dp数组
的长度是dp = [0]*len(nums)
,这样的话就会造成一些问题,就是当你的nums数组的长度小于3的时候,该公式使用不了
,并且当你的数组的长度大于等于3的时候,前面的dp[0]和dp[1]的情况还需要特别判断
class Solution:
def rob(self, nums: List[int]) -> int:
n = len(nums)
dp = [0]*(n)
if n <3:
return max(nums)
else:
dp[0],dp[1] = nums[0],max(nums[0],nums[1])
for i in range(2,n):
dp[i] = max(dp[i-1],dp[i-2]+nums[i])
return dp[n-1]
那么我们应该如何改进?
将dp = [0]*(len(nums)+2)
,也就是说,将dp
数组的长度开长,将对应的递推公式修改一下,也就是dp数组
部分的下标都保证不会出现负数dp[i+2] = max(dp[i+1],dp[i]+nums[i])
class Solution:
def rob(self, nums: List[int]) -> int:
n = len(nums)
dp = [0]*(n+2)
for i,c in enumerate(nums):
dp[i+2] = max(dp[i+1],c+dp[i])
return dp[-1]
例子2:最大子数组和
53.最大子数组和


这个递推公式是 dp[i] = max(dp[i-1]+nums[i],nums[i]),所以我们将dp数组开长一个,但是dp数组的初始值要赋值为一个很小的数,因为我们最后返回的是max(dp)
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
n = len(nums)
dp = [-10**4]*(n)
dp[0] = nums[0]
for i in range(1,n):
dp[i] = max(dp[i-1]+nums[i],nums[i])
return max(dp)