杯子检测系统源码分享

杯子检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着计算机视觉技术的迅猛发展,物体检测作为其重要分支之一,已广泛应用于各个领域,包括智能监控、自动驾驶、机器人视觉等。在这些应用中,杯子等日常物品的检测尤为重要,尤其是在智能家居和服务机器人等场景中,准确识别和定位杯子可以极大提升系统的智能化水平和用户体验。传统的物体检测方法在处理复杂背景、遮挡物以及不同光照条件下的物体时,往往面临着准确率低和鲁棒性差的问题。因此,基于深度学习的物体检测方法,尤其是YOLO(You Only Look Once)系列模型,因其高效性和实时性而受到广泛关注。

YOLOv8作为YOLO系列的最新版本,继承了前几代模型的优点,并在准确性和速度上进行了显著提升。其通过将物体检测任务转化为回归问题,使得模型能够在单次前向传播中同时预测多个边界框和类别概率,极大地提高了检测效率。然而,尽管YOLOv8在多种物体检测任务中表现出色,但在特定场景下的应用仍需进一步优化,尤其是在针对特定类别(如杯子)的检测任务中。

本研究旨在基于改进的YOLOv8模型,构建一个高效的杯子检测系统。所使用的数据集包含2300张图像,涵盖了两类目标:杯子及其变体。数据集的丰富性为模型的训练提供了良好的基础,但为了提高模型在实际应用中的表现,仍需对YOLOv8进行针对性的改进。这些改进可能包括优化网络结构、调整超参数、增强数据集等,以提高模型对杯子的检测精度和鲁棒性。

本研究的意义在于,通过构建一个高效的杯子检测系统,不仅能够推动物体检测技术在日常生活中的应用,还能为智能家居和服务机器人等领域提供技术支持。随着人们对智能化生活的追求,能够准确识别和处理日常物品的系统将成为未来发展的重要方向。此外,研究成果也将为后续的物体检测研究提供参考,推动YOLO系列模型在其他特定物体检测任务中的应用。

综上所述,基于改进YOLOv8的杯子检测系统的研究,不仅具有重要的理论价值,还具有广泛的实际应用前景。通过深入探讨和解决现有技术中的不足之处,本研究将为物体检测领域的发展贡献新的思路和方法,推动相关技术的进步与应用。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 2
names: [‘0 cup’, ‘Cup’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们采用了名为“Cup Detection”的数据集,以改进YOLOv8模型在杯子检测任务中的性能。该数据集专门设计用于训练和评估计算机视觉算法,尤其是在识别和定位杯子这一特定物体方面。数据集的类别数量为2,分别为“0 cup”和“Cup”。这种分类方式的设计意在区分不同状态下的杯子,其中“0 cup”表示没有杯子的背景或场景,而“Cup”则代表实际存在的杯子对象。这种明确的类别划分为模型的训练提供了清晰的目标,使得YOLOv8能够更有效地学习到杯子的特征和形态。

数据集的构建过程包括多样化的场景和背景,以确保模型在不同环境下的鲁棒性。数据集中包含了各种类型的杯子,包括陶瓷杯、塑料杯、玻璃杯等,这些不同材质和形状的杯子为模型提供了丰富的学习样本。此外,数据集还涵盖了不同的光照条件和拍摄角度,以模拟现实生活中可能遇到的各种情况。这种多样性不仅提高了模型的泛化能力,也使得其在实际应用中能够更好地适应不同的使用场景。

在数据预处理阶段,我们对图像进行了标准化处理,包括尺寸调整、数据增强等,以提高模型的训练效率和准确性。数据增强技术如随机裁剪、旋转、翻转等被广泛应用,以增加训练样本的多样性,从而帮助模型更好地学习到杯子的特征。这些处理步骤确保了数据集的高质量,使得YOLOv8在训练过程中能够获得更为有效的特征表示。

为了评估模型的性能,我们在数据集中划分了训练集和验证集。训练集用于模型的训练,而验证集则用于监测模型在未见数据上的表现。通过这种方式,我们能够及时调整模型的参数,避免过拟合现象的发生。数据集的标注工作由经验丰富的标注人员完成,确保每个图像中的杯子都被准确标记,提供了可靠的训练和验证基础。

总的来说,“Cup Detection”数据集为YOLOv8的杯子检测系统提供了一个全面而多样化的训练基础。通过对数据集的精心设计和处理,我们期望能够显著提升模型在杯子检测任务中的准确性和效率。随着深度学习技术的不断进步,我们相信这一数据集将为相关研究提供重要的支持,推动杯子检测领域的发展。未来,我们还计划进一步扩展数据集的规模和类别,以涵盖更多种类的杯子和相关物体,从而提升模型的适用性和实用性。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8作为YOLO系列中的最新一员,继承并优化了前几代模型的核心思想,旨在提供更高效的目标检测解决方案。与以往的anchor-based检测方法相比,YOLOv8引入了anchor-free的设计理念,这一转变不仅提升了检测精度,还显著加快了检测速度,使得该算法在实时应用场景中表现出色。YOLOv8的架构主要由输入端、主干网络、Neck端和输出端四个模块组成,各个模块相辅相成,共同构成了这一高效的目标检测系统。

在输入端,YOLOv8采用了一系列数据增强技术,包括Mosaic数据增强、自适应图片缩放和灰度填充等,以提升模型的泛化能力和鲁棒性。这些预处理步骤确保了输入图像的多样性,使得模型能够在不同的环境下进行有效的学习和检测。主干网络则是YOLOv8的核心部分,采用了一系列卷积层和反卷积层,通过C2模块、残差连接和瓶颈结构等技术,提取出图像中的重要特征。特别是C2f模块的引入,使得特征提取过程更加高效,能够更好地捕捉图像中的细节信息。

Neck端的设计则是YOLOv8的一大亮点。该部分基于路径聚合网络(PAN)结构,通过上采样和下采样的方式,对来自主干网络的不同尺度特征图进行融合。这种多尺度特征融合技术使得YOLOv8能够更好地处理不同大小的目标,增强了模型对小目标的检测能力。输出端采用了decoupled head结构,实现了分类和回归过程的解耦,这一设计使得模型在进行目标检测时,能够更加灵活地处理正负样本的匹配和损失计算。

YOLOv8的损失计算策略也进行了优化,采用了BCE(binary cross-entropy)计算分类损失,同时使用DFL(distribution focal loss)和CIoU(complete intersection over union)损失函数计算回归损失。这种新的损失策略使得YOLOv8在目标检测任务中,能够更准确地评估模型的性能,从而提升检测精度。

尽管YOLOv8在多个方面进行了改进,但在复杂水面环境下的应用仍然面临挑战。由于小目标漂浮物的特征复杂且背景多样,YOLOv8在这些场景下的定位精度和目标感知能力仍显不足。因此,针对这些问题,研究者们提出了YOLOv8-WSSOD算法,以进一步提升YOLOv8在特定应用场景下的表现。

YOLOv8-WSSOD算法的改进主要体现在几个方面。首先,为了减轻主干网络下采样过程中的噪声影响,YOLOv8-WSSOD引入了捕获远程依赖的思想,采用了BiFormer双层路由注意力机制构建C2fBF模块。这一模块的设计旨在保留特征提取过程中更细粒度的上下文信息,从而提高模型对复杂背景下小目标的感知能力。其次,针对小目标漏检的问题,YOLOv8-WSSOD添加了一个更小的检测头,以提升网络对小目标的检测能力。此外,在Neck端引入GSConv和Slim-neck技术,旨在保持检测精度的同时降低计算量,使得模型在处理复杂场景时更加高效。

最后,YOLOv8-WSSOD还使用了MPDIoU损失函数替换了CIoU损失函数,以提高模型的泛化能力和精准度。这一改进使得YOLOv8-WSSOD在复杂环境下的表现更加出色,能够有效地应对小目标的检测挑战。

总的来说,YOLOv8算法通过一系列创新设计和优化,成功地在目标检测领域树立了新的标杆。其anchor-free的设计理念、先进的多尺度特征融合技术以及灵活的损失计算策略,使得YOLOv8在各类应用场景中展现出强大的性能。尽管在特定环境下仍存在一些不足,但通过针对性的改进,YOLOv8及其衍生版本如YOLOv8-WSSOD,展现了极大的潜力,为未来的目标检测研究提供了新的方向。随着技术的不断进步,YOLOv8系列算法无疑将在更广泛的应用领域中发挥重要作用。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是代码的核心部分,并附上详细的中文注释:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行结果,如果返回码不为0,则表示执行出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 主程序入口
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 假设脚本在当前目录下

    # 调用函数运行脚本
    run_script(script_path)

代码分析与注释:

  1. 导入模块

    • import sys: 导入系统相关的模块,用于获取当前 Python 解释器的路径。
    • import subprocess: 导入子进程模块,用于在 Python 中执行外部命令。
  2. 定义 run_script 函数

    • 该函数接收一个参数 script_path,表示要运行的 Python 脚本的路径。
    • 使用 sys.executable 获取当前 Python 解释器的路径,以确保使用正确的 Python 环境来运行脚本。
    • 构建一个命令字符串,使用 streamlit 模块运行指定的脚本。
    • 使用 subprocess.run 执行构建的命令,并将 shell=True 作为参数,允许在 shell 中执行命令。
    • 检查命令的返回码,如果返回码不为0,表示脚本运行出错,打印错误信息。
  3. 主程序入口

    • 使用 if __name__ == "__main__": 确保只有在直接运行该脚本时才会执行以下代码。
    • 指定要运行的脚本路径(这里假设脚本名为 web.py)。
    • 调用 run_script 函数来执行指定的脚本。

总结:

这段代码的核心功能是使用当前 Python 环境运行一个指定的脚本,并在运行出错时提供反馈。

这个文件名为 ui.py,它的主要功能是通过当前的 Python 环境来运行一个指定的脚本,具体是一个名为 web.py 的文件。文件中首先导入了必要的模块,包括 sysossubprocess,以及一个自定义的函数 abs_path,该函数用于获取文件的绝对路径。

run_script 函数中,首先获取当前 Python 解释器的路径,这通过 sys.executable 实现。接着,构建一个命令字符串,该命令使用 streamlit 来运行指定的脚本。这里使用了 subprocess.run 方法来执行这个命令,并且设置 shell=True 以便在 shell 环境中运行命令。

在执行命令后,函数会检查返回的状态码。如果状态码不为零,表示脚本运行过程中出现了错误,此时会打印出“脚本运行出错”的提示信息。

在文件的最后部分,使用 if __name__ == "__main__": 来确保只有在直接运行该文件时才会执行后面的代码。在这里,指定了要运行的脚本路径 web.py,并调用 run_script 函数来执行这个脚本。

总体来说,这个文件的功能是封装了一个简单的命令行工具,方便用户通过 Python 环境来启动一个 Streamlit 应用。

11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\autobatch.py

以下是经过简化和注释的核心代码部分:

import numpy as np
import torch
from ultralytics.utils import LOGGER, colorstr
from ultralytics.utils.torch_utils import profile

def check_train_batch_size(model, imgsz=640, amp=True):
    """
    检查YOLO模型的训练批量大小。

    参数:
        model (torch.nn.Module): 要检查批量大小的YOLO模型。
        imgsz (int): 用于训练的图像大小。
        amp (bool): 如果为True,则使用自动混合精度(AMP)进行训练。

    返回:
        (int): 使用autobatch()函数计算的最佳批量大小。
    """
    with torch.cuda.amp.autocast(amp):
        return autobatch(model.train(), imgsz)  # 计算最佳批量大小

def autobatch(model, imgsz=640, fraction=0.60, batch_size=16):
    """
    自动估计最佳YOLO批量大小,以使用可用CUDA内存的一部分。

    参数:
        model (torch.nn.Module): 要计算批量大小的YOLO模型。
        imgsz (int): 用作YOLO模型输入的图像大小,默认为640。
        fraction (float): 要使用的可用CUDA内存的比例,默认为0.60。
        batch_size (int): 如果检测到错误,则使用的默认批量大小,默认为16。

    返回:
        (int): 最佳批量大小。
    """
    # 检查设备
    prefix = colorstr('AutoBatch: ')
    LOGGER.info(f'{prefix}计算图像大小为{imgsz}的最佳批量大小')
    device = next(model.parameters()).device  # 获取模型所在设备
    if device.type == 'cpu':
        LOGGER.info(f'{prefix}未检测到CUDA,使用默认CPU批量大小 {batch_size}')
        return batch_size

    # 检查CUDA内存
    gb = 1 << 30  # 字节转换为GiB (1024 ** 3)
    properties = torch.cuda.get_device_properties(device)  # 获取设备属性
    total_memory = properties.total_memory / gb  # 总内存(GiB)
    reserved_memory = torch.cuda.memory_reserved(device) / gb  # 保留内存(GiB)
    allocated_memory = torch.cuda.memory_allocated(device) / gb  # 已分配内存(GiB)
    free_memory = total_memory - (reserved_memory + allocated_memory)  # 可用内存(GiB)
    
    LOGGER.info(f'{prefix}{device} ({properties.name}) {total_memory:.2f}G 总, {reserved_memory:.2f}G 保留, {allocated_memory:.2f}G 已分配, {free_memory:.2f}G 可用')

    # 评估批量大小
    batch_sizes = [1, 2, 4, 8, 16]  # 可能的批量大小
    try:
        img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]  # 创建空张量以模拟输入
        results = profile(img, model, n=3, device=device)  # 评估每个批量大小的内存使用情况

        # 拟合线性模型以估计最佳批量大小
        memory_usage = [x[2] for x in results if x]  # 提取内存使用情况
        p = np.polyfit(batch_sizes[:len(memory_usage)], memory_usage, deg=1)  # 一次多项式拟合
        optimal_batch_size = int((free_memory * fraction - p[1]) / p[0])  # 计算最佳批量大小

        # 检查是否有失败的批量大小
        if None in results:
            i = results.index(None)  # 找到第一个失败的索引
            if optimal_batch_size >= batch_sizes[i]:  # 如果最佳批量大小在失败点之后
                optimal_batch_size = batch_sizes[max(i - 1, 0)]  # 选择安全的前一个点

        # 确保最佳批量大小在安全范围内
        if optimal_batch_size < 1 or optimal_batch_size > 1024:
            optimal_batch_size = batch_size
            LOGGER.info(f'{prefix}警告 ⚠️ 检测到CUDA异常,使用默认批量大小 {batch_size}.')

        # 记录实际使用的批量大小
        fraction_used = (np.polyval(p, optimal_batch_size) + reserved_memory + allocated_memory) / total_memory
        LOGGER.info(f'{prefix}使用批量大小 {optimal_batch_size}{total_memory * fraction_used:.2f}G/{total_memory:.2f}G ({fraction_used * 100:.0f}%) ✅')
        return optimal_batch_size
    except Exception as e:
        LOGGER.warning(f'{prefix}警告 ⚠️ 检测到错误: {e}, 使用默认批量大小 {batch_size}.')
        return batch_size

代码说明:

  1. check_train_batch_size: 该函数用于检查给定YOLO模型的最佳训练批量大小。它使用autobatch函数来计算最佳批量大小,并支持自动混合精度(AMP)。

  2. autobatch: 该函数自动估计最佳批量大小,以使用可用CUDA内存的一部分。它首先检查设备类型,如果是CPU,则返回默认批量大小。接着,它获取CUDA设备的内存信息,并尝试评估不同批量大小的内存使用情况。最后,通过线性拟合计算最佳批量大小,并确保其在安全范围内。

  3. 内存管理: 代码中使用了CUDA内存的总量、保留量和已分配量来计算可用内存,并通过这些信息来决定最佳的批量大小。

  4. 异常处理: 在评估过程中,如果发生任何异常,代码会记录警告并返回默认批量大小。

这个程序文件是用于估算YOLO模型在PyTorch中最佳批处理大小的工具,目的是为了在训练过程中合理利用可用的CUDA内存。文件中定义了几个函数,主要包括check_train_batch_sizeautobatch

check_train_batch_size函数接收一个YOLO模型、图像大小和一个布尔值(表示是否使用自动混合精度)作为参数。它通过调用autobatch函数来计算最佳的批处理大小。在执行过程中,使用了PyTorch的自动混合精度功能,以提高训练效率。

autobatch函数是核心功能,它自动估算最佳的批处理大小。函数首先检查模型所在的设备,如果设备是CPU,则返回默认的批处理大小。如果使用的是CUDA设备,函数会获取CUDA设备的内存信息,包括总内存、已保留内存和已分配内存,从而计算出可用的自由内存。

接下来,函数会对几个预设的批处理大小(1, 2, 4, 8, 16)进行性能分析,创建相应大小的空张量,并调用profile函数来测量每个批处理大小下的内存使用情况。通过对这些结果进行线性拟合,函数可以估算出一个最佳的批处理大小。

在估算过程中,如果发现某些批处理大小导致错误,函数会选择一个安全的批处理大小作为替代。此外,函数还会检查计算出的批处理大小是否在合理范围内(1到1024之间),如果不在这个范围内,则使用默认的批处理大小。

最后,函数会记录使用的批处理大小和内存使用情况,并返回最佳的批处理大小。如果在执行过程中发生异常,函数会捕获并记录警告信息,并返回默认的批处理大小。

整体而言,这个文件的功能是为了帮助用户在训练YOLO模型时,自动计算出合适的批处理大小,以优化内存使用和训练效率。

11.3 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\instance.py

以下是经过简化和注释的核心代码部分,主要集中在 BboxesInstances 类的实现上。

import numpy as np

class Bboxes:
    """
    处理边界框的类,支持多种格式('xyxy', 'xywh', 'ltwh')。
    """

    def __init__(self, bboxes, format='xyxy') -> None:
        """
        初始化 Bboxes 类,接收边界框数据和格式。
        
        参数:
            bboxes (numpy.ndarray): 边界框数据,形状为 [N, 4]。
            format (str): 边界框格式,默认为 'xyxy'。
        """
        # 验证格式是否有效
        assert format in ['xyxy', 'xywh', 'ltwh'], f'无效的边界框格式: {format}'
        # 确保 bboxes 是二维数组
        bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
        assert bboxes.ndim == 2 and bboxes.shape[1] == 4
        self.bboxes = bboxes  # 存储边界框
        self.format = format  # 存储格式

    def convert(self, format):
        """将边界框格式转换为指定格式。"""
        assert format in ['xyxy', 'xywh', 'ltwh'], f'无效的边界框格式: {format}'
        if self.format == format:
            return  # 如果格式相同,则不进行转换
        # 根据当前格式和目标格式选择转换函数
        func = self._get_conversion_function(format)
        self.bboxes = func(self.bboxes)  # 执行转换
        self.format = format  # 更新格式

    def _get_conversion_function(self, format):
        """根据当前格式和目标格式返回相应的转换函数。"""
        if self.format == 'xyxy':
            return xyxy2xywh if format == 'xywh' else xyxy2ltwh
        elif self.format == 'xywh':
            return xywh2xyxy if format == 'xyxy' else xywh2ltwh
        else:
            return ltwh2xyxy if format == 'xyxy' else ltwh2xywh

    def areas(self):
        """计算并返回每个边界框的面积。"""
        self.convert('xyxy')  # 转换为 'xyxy' 格式以计算面积
        return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])  # 宽 * 高

class Instances:
    """
    存储图像中检测到的对象的边界框、分段和关键点的容器。
    """

    def __init__(self, bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True) -> None:
        """
        初始化 Instances 类,接收边界框、分段和关键点数据。
        
        参数:
            bboxes (numpy.ndarray): 边界框数据,形状为 [N, 4]。
            segments (list | ndarray): 对象分段数据,默认为 None。
            keypoints (ndarray): 关键点数据,形状为 [N, 17, 3],默认为 None。
            bbox_format (str): 边界框格式,默认为 'xywh'。
            normalized (bool): 是否归一化,默认为 True。
        """
        self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)  # 初始化边界框
        self.keypoints = keypoints  # 存储关键点
        self.normalized = normalized  # 存储归一化标志
        self.segments = self._process_segments(segments)  # 处理分段数据

    def _process_segments(self, segments):
        """处理分段数据,确保其形状正确。"""
        if segments is None:
            return np.zeros((0, 1000, 2), dtype=np.float32)  # 如果没有分段,返回空数组
        segments = resample_segments(segments)  # 重新采样分段
        return np.stack(segments, axis=0)  # 将分段数据堆叠成数组

    def convert_bbox(self, format):
        """转换边界框格式。"""
        self._bboxes.convert(format=format)

    @property
    def bbox_areas(self):
        """计算并返回边界框的面积。"""
        return self._bboxes.areas()

    def scale(self, scale_w, scale_h, bbox_only=False):
        """缩放边界框、分段和关键点的坐标。"""
        self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))  # 缩放边界框
        if not bbox_only:
            self.segments[..., 0] *= scale_w  # 缩放分段
            self.segments[..., 1] *= scale_h  # 缩放分段
            if self.keypoints is not None:
                self.keypoints[..., 0] *= scale_w  # 缩放关键点
                self.keypoints[..., 1] *= scale_h  # 缩放关键点

    def __getitem__(self, index) -> 'Instances':
        """
        使用索引获取特定实例或一组实例。
        
        参数:
            index (int, slice, or np.ndarray): 索引、切片或布尔数组,用于选择所需的实例。
        
        返回:
            Instances: 包含所选边界框、分段和关键点的新 Instances 对象。
        """
        segments = self.segments[index] if len(self.segments) else self.segments
        keypoints = self.keypoints[index] if self.keypoints is not None else None
        bboxes = self.bboxes[index]
        bbox_format = self._bboxes.format
        return Instances(
            bboxes=bboxes,
            segments=segments,
            keypoints=keypoints,
            bbox_format=bbox_format,
            normalized=self.normalized,
        )

    @property
    def bboxes(self):
        """返回边界框数据。"""
        return self._bboxes.bboxes

代码说明:

  1. Bboxes 类:用于处理边界框的类,支持不同的格式(‘xyxy’, ‘xywh’, ‘ltwh’)。提供了初始化、格式转换、面积计算等功能。
  2. Instances 类:用于存储图像中检测到的对象的边界框、分段和关键点。支持缩放、格式转换和索引操作。
  3. 方法和属性:每个类都定义了多个方法和属性,以便于对边界框和实例的操作,如计算面积、缩放、格式转换等。

这个程序文件是一个用于处理边界框(bounding boxes)的类库,主要用于计算机视觉任务中,例如目标检测。文件中定义了两个主要的类:BboxesInstances,它们分别用于处理边界框和包含边界框、分割和关键点的实例。

首先,Bboxes类用于管理边界框,支持多种格式,包括xyxy(左上角和右下角坐标)、xywh(中心坐标和宽高)以及ltwh(左上角坐标和宽高)。在初始化时,Bboxes类会检查输入的边界框格式是否有效,并确保输入的边界框数据是一个二维的NumPy数组。该类提供了多种方法,例如convert用于转换边界框格式,areas用于计算边界框的面积,muladd用于缩放和偏移边界框的坐标。

Instances类则是一个更复杂的容器,除了包含边界框外,还可以存储分割信息和关键点。该类的构造函数接收边界框、分割和关键点数据,并将其存储为内部属性。Instances类提供了多种方法来处理这些数据,包括坐标的归一化和反归一化、添加填充、翻转坐标、裁剪到图像边界等。它还可以通过索引操作获取特定的实例或实例集合。

此外,两个类都实现了拼接功能,可以将多个BboxesInstances对象合并为一个新的对象。这对于处理批量数据时非常有用。

总的来说,这个文件提供了一套完整的工具,用于处理和操作边界框及其相关信息,适用于YOLO等目标检测算法的实现。

11.4 code\ultralytics\models\nas_init_.py

以下是代码中最核心的部分,并附上详细的中文注释:

# 导入必要的模块和类
from .model import NAS  # 从当前包的model模块中导入NAS类
from .predict import NASPredictor  # 从当前包的predict模块中导入NASPredictor类
from .val import NASValidator  # 从当前包的val模块中导入NASValidator类

# 定义模块的公开接口
__all__ = "NASPredictor", "NASValidator", "NAS"  # 指定当使用from module import *时,公开的类和函数

注释说明:

  1. 导入模块

    • from .model import NAS:从当前包的model模块中导入NAS类,NAS可能是一个神经网络架构的定义。
    • from .predict import NASPredictor:从当前包的predict模块中导入NASPredictor类,NASPredictor可能用于进行预测的功能。
    • from .val import NASValidator:从当前包的val模块中导入NASValidator类,NASValidator可能用于验证模型性能的功能。
  2. 定义公开接口

    • __all__是一个特殊变量,用于定义模块的公共接口。当使用from module import *时,只有在__all__中列出的名称会被导入。这里列出了NASPredictorNASValidatorNAS,表示这些是模块的主要功能组件。

这个程序文件是一个Python模块的初始化文件,通常用于定义模块的公共接口。在这个文件中,首先有一个注释,表明该代码属于Ultralytics YOLO项目,并且使用AGPL-3.0许可证。接下来,文件通过相对导入的方式引入了三个组件:NASNASPredictorNASValidator,这些组件分别来自于同一目录下的modelpredictval模块。

NAS可能是一个与神经架构搜索(Neural Architecture Search)相关的模型类,而NASPredictorNASValidator则分别是用于进行预测和验证的类。这种结构使得模块在被导入时,可以直接使用这些类,而不需要用户去了解内部的实现细节。

最后,__all__变量定义了模块的公共接口,包含了NASPredictorNASValidatorNAS这三个名称。这意味着,当使用from module import *的方式导入该模块时,只会导入这三个指定的名称,从而控制了模块的可见性,避免不必要的名称冲突和隐藏实现细节。整体来看,这个文件的主要作用是组织和简化模块的使用,使得用户能够方便地访问所需的功能。

11.5 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\mlflow.py

以下是代码中最核心的部分,并附上详细的中文注释:

from ultralytics.utils import LOGGER, RUNS_DIR, SETTINGS, TESTS_RUNNING, colorstr

try:
    import os

    # 确保在测试环境中不记录日志
    assert not TESTS_RUNNING or 'test_mlflow' in os.environ.get('PYTEST_CURRENT_TEST', '')
    # 确保MLflow集成已启用
    assert SETTINGS['mlflow'] is True  
    import mlflow

    # 确保mlflow包已正确导入
    assert hasattr(mlflow, '__version__')  
    from pathlib import Path
    PREFIX = colorstr('MLflow: ')  # 设置日志前缀

except (ImportError, AssertionError):
    mlflow = None  # 如果导入失败,则mlflow为None


def on_pretrain_routine_end(trainer):
    """
    在预训练例程结束时,将训练参数记录到MLflow。

    该函数根据环境变量和训练器参数设置MLflow日志。它设置跟踪URI、实验名称和运行名称,
    然后在未激活的情况下启动MLflow运行。最后记录训练器的参数。

    参数:
        trainer (ultralytics.engine.trainer.BaseTrainer): 包含要记录的参数和参数的训练对象。

    全局变量:
        mlflow: 用于记录的mlflow模块。

    环境变量:
        MLFLOW_TRACKING_URI: MLflow跟踪的URI。如果未设置,默认为'runs/mlflow'。
        MLFLOW_EXPERIMENT_NAME: MLflow实验的名称。如果未设置,默认为trainer.args.project。
        MLFLOW_RUN: MLflow运行的名称。如果未设置,默认为trainer.args.name。
    """
    global mlflow

    # 获取跟踪URI,默认为'runs/mlflow'
    uri = os.environ.get('MLFLOW_TRACKING_URI') or str(RUNS_DIR / 'mlflow')
    LOGGER.debug(f'{PREFIX} tracking uri: {uri}')
    mlflow.set_tracking_uri(uri)

    # 设置实验和运行名称
    experiment_name = os.environ.get('MLFLOW_EXPERIMENT_NAME') or trainer.args.project or '/Shared/YOLOv8'
    run_name = os.environ.get('MLFLOW_RUN') or trainer.args.name
    mlflow.set_experiment(experiment_name)

    mlflow.autolog()  # 启用自动日志记录
    try:
        # 获取当前活动的运行或启动新的运行
        active_run = mlflow.active_run() or mlflow.start_run(run_name=run_name)
        LOGGER.info(f'{PREFIX}logging run_id({active_run.info.run_id}) to {uri}')
        if Path(uri).is_dir():
            LOGGER.info(f"{PREFIX}view at http://127.0.0.1:5000 with 'mlflow server --backend-store-uri {uri}'")
        LOGGER.info(f"{PREFIX}disable with 'yolo settings mlflow=False'")
        mlflow.log_params(dict(trainer.args))  # 记录训练参数
    except Exception as e:
        LOGGER.warning(f'{PREFIX}WARNING ⚠️ Failed to initialize: {e}\n'
                       f'{PREFIX}WARNING ⚠️ Not tracking this run')


def on_fit_epoch_end(trainer):
    """在每个训练周期结束时,将训练指标记录到MLflow。"""
    if mlflow:
        # 清理指标名称并将其记录到MLflow
        sanitized_metrics = {k.replace('(', '').replace(')', ''): float(v) for k, v in trainer.metrics.items()}
        mlflow.log_metrics(metrics=sanitized_metrics, step=trainer.epoch)


def on_train_end(trainer):
    """在训练结束时记录模型工件。"""
    if mlflow:
        # 记录最佳模型的文件
        mlflow.log_artifact(str(trainer.best.parent))  
        # 记录保存目录中的所有其他文件
        for f in trainer.save_dir.glob('*'):
            if f.suffix in {'.png', '.jpg', '.csv', '.pt', '.yaml'}:
                mlflow.log_artifact(str(f))

        mlflow.end_run()  # 结束当前的MLflow运行
        LOGGER.info(f'{PREFIX}results logged to {mlflow.get_tracking_uri()}\n'
                    f"{PREFIX}disable with 'yolo settings mlflow=False'")


# 定义回调函数字典,如果mlflow未导入则为空
callbacks = {
    'on_pretrain_routine_end': on_pretrain_routine_end,
    'on_fit_epoch_end': on_fit_epoch_end,
    'on_train_end': on_train_end} if mlflow else {}

代码核心部分解释:

  1. 导入必要的模块:导入了ultralytics库中的一些工具和mlflow库。
  2. 环境变量检查:确保在测试环境中不记录日志,并检查MLflow集成是否启用。
  3. 日志记录函数
    • on_pretrain_routine_end:在预训练结束时记录训练参数和设置MLflow运行。
    • on_fit_epoch_end:在每个训练周期结束时记录训练指标。
    • on_train_end:在训练结束时记录模型的工件(如权重文件和其他相关文件)。
  4. 回调函数字典:根据是否成功导入mlflow来定义回调函数。

这个程序文件是用于在Ultralytics YOLO(一个目标检测模型)中集成MLflow的日志记录功能。MLflow是一个开源平台,用于管理机器学习实验,能够记录模型的参数、指标和模型工件。文件中包含了一些重要的功能和设置,下面对其进行详细说明。

首先,文件开头的文档字符串介绍了MLflow在Ultralytics YOLO中的作用,说明了如何设置跟踪URI、项目名称和运行名称,以及如何启动本地的MLflow服务器。用户可以通过环境变量或参数来配置这些设置。文档还提供了如何终止正在运行的MLflow服务器的命令。

接下来,文件导入了一些必要的模块,包括Ultralytics的日志记录器、运行目录、设置和颜色字符串。然后,尝试导入os模块,并进行了一些断言检查,以确保在测试运行时不记录日志,并验证MLflow集成是否启用。如果MLflow模块未成功导入或版本不正确,mlflow变量将被设置为None。

文件定义了三个主要的回调函数,分别在不同的训练阶段执行日志记录。第一个函数on_pretrain_routine_end在预训练结束时调用,它设置MLflow的跟踪URI、实验名称和运行名称,并开始一个新的MLflow运行。它还会记录训练器的参数。如果在初始化过程中出现异常,会记录警告信息。

第二个函数on_fit_epoch_end在每个训练周期结束时调用,用于记录训练指标。它会将训练器的指标进行清理(去掉括号),并将其记录到MLflow中。

第三个函数on_train_end在训练结束时调用,负责记录模型工件。它会记录最佳模型和最后模型的权重文件,以及保存目录中的其他文件(如图像、CSV、YAML等)。最后,它结束当前的MLflow运行,并记录结果的URI。

最后,文件创建了一个回调字典,包含了三个回调函数,如果mlflow模块可用,则将这些函数注册到字典中。这使得在训练过程中可以自动调用这些函数进行日志记录。

总的来说,这个文件为Ultralytics YOLO提供了一个方便的接口,用于在训练过程中记录和管理实验数据,帮助用户更好地跟踪和分析模型的性能。

11.6 train.py

以下是代码中最核心的部分,并附上详细的中文注释:

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类用于基于检测模型进行训练,继承自BaseTrainer类。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,可以是'train'或'val',用户可以为每种模式自定义不同的增强。
            batch (int, optional): 批次大小,仅用于'rect'模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 仅在DDP情况下初始化数据集
            dataset = self.build_dataset(dataset_path, mode, batch_size)
        shuffle = mode == "train"  # 训练模式下打乱数据
        if getattr(dataset, "rect", False) and shuffle:
            LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
            shuffle = False
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对一批图像进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值缩放
            batch["img"] = imgs  # 更新图像
        return batch

    def set_model_attributes(self):
        """设置模型的属性,包括类别数量和名称。"""
        self.model.nc = self.data["nc"]  # 将类别数量附加到模型
        self.model.names = self.data["names"]  # 将类别名称附加到模型
        self.model.args = self.args  # 将超参数附加到模型

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def get_validator(self):
        """返回YOLO模型验证器。"""
        self.loss_names = "box_loss", "cls_loss", "dfl_loss"  # 定义损失名称
        return yolo.detect.DetectionValidator(
            self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
        )

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

代码核心部分说明:

  1. DetectionTrainer类:用于训练YOLO检测模型,继承自BaseTrainer。
  2. build_dataset方法:构建YOLO数据集,处理图像路径和模式。
  3. get_dataloader方法:创建数据加载器,处理数据集的初始化和打乱。
  4. preprocess_batch方法:对图像批次进行预处理,包括归一化和多尺度调整。
  5. set_model_attributes方法:设置模型的类别数量和名称。
  6. get_model方法:返回YOLO检测模型,并可选择加载预训练权重。
  7. get_validator方法:返回用于模型验证的检测验证器。
  8. plot_training_samples方法:绘制训练样本及其注释,便于可视化训练过程。

这个程序文件 train.py 是一个用于训练目标检测模型的脚本,基于Ultralytics的YOLO(You Only Look Once)框架。文件中定义了一个名为 DetectionTrainer 的类,该类继承自 BaseTrainer,专门用于处理YOLO模型的训练过程。

在类的构造中,首先定义了一些方法来构建数据集、获取数据加载器、预处理批次数据、设置模型属性、获取模型、获取验证器、记录损失项、生成训练进度字符串、绘制训练样本和绘制训练指标等。

build_dataset 方法用于构建YOLO数据集,接收图像路径、模式(训练或验证)和批次大小作为参数。它会根据模型的步幅计算合适的尺寸,并调用 build_yolo_dataset 函数来创建数据集。

get_dataloader 方法则用于构建并返回数据加载器,确保在分布式训练中只初始化一次数据集,并根据模式设置是否打乱数据顺序。

preprocess_batch 方法负责对输入的图像批次进行预处理,包括将图像缩放到适当的大小并转换为浮点数格式。它还支持多尺度训练,通过随机选择图像的尺寸来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等,以确保模型能够正确处理数据集中的标签。

get_model 方法返回一个YOLO检测模型实例,并可选择加载预训练权重。

get_validator 方法返回一个用于模型验证的 DetectionValidator 实例,以便在训练过程中评估模型的性能。

label_loss_items 方法用于返回带有标签的训练损失项字典,方便监控训练过程中的损失变化。

progress_string 方法生成一个格式化的字符串,显示训练进度,包括当前的轮次、GPU内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注,便于可视化训练过程中的数据。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带标签的训练图,帮助分析模型的训练效果。

总体来说,这个文件提供了一个完整的框架,用于训练YOLO目标检测模型,涵盖了数据处理、模型训练、验证和结果可视化等多个方面。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLOv8的目标检测框架,旨在提供高效的模型训练、推理和评估工具。整体架构由多个模块组成,每个模块负责特定的功能,包括数据处理、模型构建、训练、验证、回调、日志记录等。项目通过合理的模块化设计,使得用户能够方便地进行模型的训练和调试,同时支持多种功能扩展,如自动批处理、MLflow集成等。

以下是每个文件的功能整理:

文件路径功能描述
ui.py封装了一个命令行工具,用于通过Python环境运行指定的Streamlit应用脚本。
ultralytics/utils/autobatch.py自动估算YOLO模型的最佳批处理大小,以优化内存使用和训练效率。
ultralytics/utils/instance.py提供了处理边界框和实例的工具类,支持多种边界框格式和相关操作。
ultralytics/models/nas/__init__.py初始化文件,导入神经架构搜索相关的模型和工具,简化模块的使用。
ultralytics/utils/callbacks/mlflow.py集成MLflow的日志记录功能,用于在训练过程中记录实验数据和模型性能。
train.py定义了YOLO模型的训练过程,包括数据集构建、模型设置、训练和验证等功能。
ultralytics/hub/__init__.py初始化文件,可能用于处理模型的加载和管理。
ultralytics/models/sam/__init__.py初始化文件,可能用于定义和导入与SAM(Segment Anything Model)相关的功能。
ultralytics/models/fastsam/model.py定义了与FastSAM模型相关的功能,可能用于快速图像分割任务。
ultralytics/nn/autobackend.py提供了自动后端选择的功能,以便在不同的硬件和环境中优化模型的运行。
ultralytics/models/yolo/detect/train.py处理YOLO模型的训练逻辑,可能包括数据加载、模型训练和评估等功能。
ultralytics/engine/results.py处理模型评估和结果记录的功能,可能包括性能指标的计算和结果的可视化。
ultralytics/solutions/__init__.py初始化文件,可能用于整合不同的解决方案和工具。

总结

通过这些模块的组合,用户可以高效地进行目标检测模型的训练、评估和部署,同时支持多种功能扩展和优化选项。这种模块化设计不仅提高了代码的可维护性和可扩展性,也使得用户在使用时更加灵活。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/Cup-Detection458

参考原始博客2: https://github.com/VisionMillionDataStudio/Cup-Detection458

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值