船只与角色检测系统源码分享

船只与角色检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着全球经济的快速发展,海洋运输业的蓬勃兴起使得船只的管理与监控变得愈发重要。船只在海洋中的活动不仅关系到航运效率,还涉及到海洋安全、环境保护以及海洋资源的合理利用。因此,如何高效、准确地识别和监测船只及其周围的角色(如船员、乘客等)成为了一个亟待解决的技术难题。近年来,深度学习技术的迅猛发展为目标检测领域带来了新的机遇,尤其是YOLO(You Only Look Once)系列模型因其高效性和实时性被广泛应用于各类目标检测任务中。

在众多YOLO模型中,YOLOv8作为最新的版本,进一步提升了检测精度和速度,成为了目标检测领域的研究热点。然而,现有的YOLOv8模型在特定场景下的应用仍存在一定的局限性,尤其是在复杂的海洋环境中,船只与角色的检测精度和鲁棒性亟待提高。因此,基于改进YOLOv8的船只与角色检测系统的研究具有重要的现实意义和应用价值。

本研究将利用“合并的Roblox与船只”数据集,该数据集包含2300幅图像,涵盖了船只检测和角色识别两个主要类别。这一数据集的构建不仅为模型的训练提供了丰富的样本,还为模型在实际应用中的泛化能力奠定了基础。通过对数据集的深入分析,我们可以更好地理解船只与角色在不同场景下的特征表现,从而为模型的改进提供数据支持。

在技术层面,研究将着重于对YOLOv8模型的改进,结合最新的深度学习算法和技术,如特征金字塔网络(FPN)、注意力机制等,旨在提升模型在复杂背景下的检测能力。同时,通过数据增强技术和迁移学习策略,进一步提高模型的训练效率和准确性。通过对船只和角色的高效检测,不仅可以提升海洋运输的安全性,还能为海洋环境监测、海洋资源管理等领域提供技术支持。

此外,本研究的成果将为相关领域的研究者提供有价值的参考,推动船只与角色检测技术的发展。随着海洋经济的不断发展,船只与角色检测系统的应用前景广阔,能够在海洋监控、智能港口、无人驾驶船舶等多个领域发挥重要作用。因此,基于改进YOLOv8的船只与角色检测系统的研究不仅具有学术价值,更具备广泛的社会和经济意义。通过本研究,我们期望能够为海洋安全、环境保护和资源管理贡献一份力量,为推动海洋经济的可持续发展提供技术保障。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 2
names: [‘Boat Detection - v2 2023-03-16 3-02am’, ‘avatar recognition - v2 release’]

4.2 本项目数据集信息介绍

数据集信息展示

在现代计算机视觉领域,尤其是在目标检测任务中,数据集的质量和多样性直接影响到模型的性能和泛化能力。本研究所使用的数据集名为“Merged Roblox and Ship”,其主要目的是为了改进YOLOv8模型在船只与角色检测系统中的表现。该数据集的构建旨在融合不同场景下的目标特征,特别是针对船只和虚拟角色的检测,具有重要的研究价值和应用潜力。

“Merged Roblox and Ship”数据集包含两大类目标,分别为“Boat Detection - v2 2023-03-16 3-02am”和“avatar recognition - v2 release”。这两类目标的选择反映了我们在目标检测中所关注的两个重要领域:水上交通工具和虚拟环境中的角色。船只检测不仅涵盖了各种类型的船只,如货船、游艇和渔船等,还考虑了不同天气和光照条件下的场景变化,以提高模型在实际应用中的鲁棒性。而角色识别则聚焦于虚拟世界中的人物形象,尤其是在Roblox等平台上创建的多样化角色,这些角色的外观、服装和动作各异,极大地丰富了数据集的多样性。

数据集的构建过程涉及了大量的图像采集和标注工作。首先,研究团队从多个来源收集了包含船只和角色的图像,包括实地拍摄的水域场景和虚拟游戏环境中的截图。每一张图像都经过精细的标注,确保每个目标的边界框和类别信息准确无误。这种高质量的标注不仅为YOLOv8模型的训练提供了坚实的基础,也为后续的模型评估和优化提供了可靠的数据支持。

在数据集的设计中,我们特别考虑了数据的平衡性和多样性。为了避免模型在某一类别上的过拟合,数据集中船只和角色的样本数量经过精心调整,确保两类目标在训练过程中均衡地被学习。此外,数据集还包含了不同角度、距离和背景下的图像,以模拟真实世界中的复杂场景。这种多样性不仅提高了模型的泛化能力,也使得模型在不同应用场景下的表现更加稳定。

为了进一步提升模型的性能,我们还计划在数据集上应用数据增强技术。这些技术包括随机裁剪、旋转、颜色变换等,旨在生成更多样化的训练样本,帮助模型更好地适应不同的环境和条件。通过这种方式,我们希望能够显著提高YOLOv8在船只与角色检测任务中的准确性和效率。

总之,“Merged Roblox and Ship”数据集的构建不仅为YOLOv8模型的训练提供了丰富的样本,也为船只与角色检测领域的研究提供了新的视角和思路。随着数据集的不断完善和模型的优化,我们期待在未来的研究中能够取得更为显著的成果,为相关领域的发展贡献力量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8算法作为YOLO系列的最新进展,继续在目标检测领域展现出其卓越的性能和灵活性。与前几代YOLO算法相比,YOLOv8不仅在模型结构上进行了创新,还在损失计算、数据增强等多个方面进行了优化,以适应不同场景的需求。YOLOv8提供了五种不同尺度的模型,包括n、s、m、l和x,这些模型在深度、特征图宽度和缩放系数上各有不同,以便在多样化的应用场景中实现最佳性能。

在YOLOv8的网络结构中,整体分为输入端、主干网络和检测端三个主要部分。以YOLOv8n为例,其网络结构设计充分考虑了轻量化和高效性。YOLOv8n模型的主干网络采用了跨级结构(CSP),这一设计理念源于YOLOv5,但经过了进一步的优化,特别是将C3模块替换为更轻量的C2f模块。C2f模块的设计灵感来源于YOLOv7中的ELAN模块,具备更多的残差连接,这使得模型在保持轻量化的同时,能够获取更丰富的梯度信息,从而提升了特征提取的能力。

在特征融合层,YOLOv8依然采用了特征金字塔网络(FPN)和路径聚合网络(PAN)的结合,以便有效地融合来自不同尺度的特征信息。值得注意的是,YOLOv8在特征融合网络中引入了BiFPN网络,这一创新使得模型在处理不同尺度特征时更加高效。BiFPN通过双向跨尺度连接和加权特征融合的方式,优化了特征信息的提取速度,从而提高了目标检测的精度和效率。

YOLOv8在检测头部分采用了当前流行的解耦合头结构,这一结构将分类和检测任务分离,使得模型在处理复杂场景时能够更为灵活。同时,YOLOv8摒弃了传统的Anchor-Based方法,转而采用Anchor-Free的策略,这一变化使得模型在处理不同尺寸目标时表现得更加出色。通过这种方式,YOLOv8能够更好地适应多样化的目标形态,提升了检测的准确性。

在训练过程中,YOLOv8引入了新的数据增强策略,特别是在最后10个epoch中关闭马赛克增强,并采用动态Task-Aligned Assigner样本分配策略。这一策略的实施,使得模型在训练过程中能够更好地适应不同样本的特征,进而提升了模型的泛化能力。

损失计算方面,YOLOv8采用了BCELoss作为分类损失,DFLLoss和CIoULoss作为回归损失。这种损失计算策略的设计,旨在通过更精确的损失函数来提升模型的学习效果,使得YOLOv8在目标检测任务中能够实现更高的准确率。

综上所述,YOLOv8算法通过对主干网络、特征融合、检测头以及损失计算等多个方面的优化,形成了一种高效、准确且灵活的目标检测解决方案。其在设计上充分考虑了轻量化和高效性,使得YOLOv8能够在各种复杂场景中表现出色,成为当前目标检测领域的一项重要技术进展。通过这些创新,YOLOv8不仅延续了YOLO系列的优良传统,还在目标检测的准确性和效率上实现了新的突破,为后续的研究和应用提供了广阔的前景。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 code\ultralytics\models\yolo\detect\predict.py

以下是对给定代码的核心部分进行分析和详细注释的结果:

# Ultralytics YOLO 🚀, AGPL-3.0 license

from ultralytics.engine.predictor import BasePredictor  # 导入基础预测器类
from ultralytics.engine.results import Results  # 导入结果类
from ultralytics.utils import ops  # 导入操作工具类

class DetectionPredictor(BasePredictor):
    """
    DetectionPredictor类扩展了BasePredictor类,用于基于检测模型进行预测。

    示例用法:
        ```python
        from ultralytics.utils import ASSETS
        from ultralytics.models.yolo.detect import DetectionPredictor

        args = dict(model='yolov8n.pt', source=ASSETS)  # 设置模型和数据源
        predictor = DetectionPredictor(overrides=args)  # 创建检测预测器实例
        predictor.predict_cli()  # 进行预测
        ```
    """

    def postprocess(self, preds, img, orig_imgs):
        """后处理预测结果,并返回Results对象的列表。"""
        
        # 应用非极大值抑制(NMS)来过滤预测框
        preds = ops.non_max_suppression(
            preds,  # 预测框
            self.args.conf,  # 置信度阈值
            self.args.iou,  # IOU阈值
            agnostic=self.args.agnostic_nms,  # 是否类别无关的NMS
            max_det=self.args.max_det,  # 最大检测框数量
            classes=self.args.classes,  # 过滤的类别
        )

        # 如果输入图像不是列表,转换为numpy数组
        if not isinstance(orig_imgs, list):  # 输入图像是torch.Tensor而不是列表
            orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)  # 转换为numpy批量数组

        results = []  # 初始化结果列表
        for i, pred in enumerate(preds):  # 遍历每个预测框
            orig_img = orig_imgs[i]  # 获取原始图像
            # 将预测框的坐标缩放到原始图像的尺寸
            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
            img_path = self.batch[0][i]  # 获取图像路径
            # 创建Results对象并添加到结果列表
            results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
        
        return results  # 返回处理后的结果列表

代码分析

  1. 类定义DetectionPredictor 继承自 BasePredictor,用于实现目标检测的预测功能。
  2. postprocess 方法:这是该类的核心方法,负责对模型的预测结果进行后处理,包括:
    • 应用非极大值抑制(NMS)来去除冗余的预测框。
    • 将输入的图像从 PyTorch 张量转换为 NumPy 数组(如果需要)。
    • 将预测框的坐标缩放到原始图像的尺寸。
    • 创建并返回包含预测结果的 Results 对象列表。

重要功能

  • 非极大值抑制:通过 ops.non_max_suppression 函数来减少重叠的检测框,提高检测精度。
  • 坐标缩放:确保预测框的坐标与原始图像的尺寸相匹配,以便于后续的可视化或分析。
  • 结果封装:使用 Results 类来封装每个预测的结果,便于后续处理和展示。

这个文件是Ultralytics YOLO(You Only Look Once)模型的一个预测模块,主要用于基于检测模型进行目标检测的预测。它继承自BasePredictor类,提供了一些特定于检测任务的功能。

在这个模块中,首先导入了必要的类和函数,包括BasePredictorResults和一些操作工具opsDetectionPredictor类的主要功能是处理模型的预测结果,并将其转换为易于使用的格式。

类的文档字符串中给出了一个使用示例,展示了如何创建一个DetectionPredictor实例并调用其预测功能。示例中使用了一个YOLO模型(yolov8n.pt)和数据源(ASSETS),然后通过predict_cli()方法进行预测。

postprocess方法是这个类的核心功能之一。它接收模型的预测结果preds、输入图像img和原始图像orig_imgs作为参数。首先,使用非极大值抑制(Non-Maximum Suppression, NMS)对预测结果进行后处理,以去除冗余的框并保留最有可能的检测结果。NMS的参数包括置信度阈值、IOU阈值、是否使用类别无关的NMS、最大检测数量和需要检测的类别。

接下来,方法检查输入的原始图像是否为列表。如果不是,说明输入的是一个PyTorch张量,此时需要将其转换为NumPy数组以便后续处理。然后,方法遍历每个预测结果,调整预测框的坐标以适应原始图像的尺寸,并将每个结果封装为Results对象。Results对象包含了原始图像、图像路径、模型名称和预测框信息。

最后,postprocess方法返回一个包含所有结果的列表,便于后续的分析和可视化。这个模块的设计使得目标检测的预测过程变得更加高效和易于管理。

11.2 code\ultralytics\trackers_init_.py

以下是代码中最核心的部分,并附上详细的中文注释:

# 导入所需的跟踪器类
from .bot_sort import BOTSORT  # 从bot_sort模块导入BOTSORT类
from .byte_tracker import BYTETracker  # 从byte_tracker模块导入BYTETracker类
from .track import register_tracker  # 从track模块导入register_tracker函数

# 定义可供外部导入的模块成员
__all__ = "register_tracker", "BOTSORT", "BYTETracker"  # 允许简化导入,指定可以被外部访问的类和函数

注释说明:

  1. 导入模块:代码的前两行从不同的模块中导入了两个跟踪器类(BOTSORTBYTETracker)以及一个注册函数(register_tracker)。这些类和函数可能用于目标跟踪的实现。

  2. __all__ 变量:该变量用于定义模块的公共接口,指定哪些类和函数可以被外部导入。这有助于控制模块的可见性,避免外部访问不必要的内部实现。

这个程序文件是一个Python模块的初始化文件,位于code/ultralytics/trackers/目录下。文件的第一行是一个注释,表明该代码与Ultralytics YOLO(一个流行的目标检测框架)相关,并且使用AGPL-3.0许可证。这意味着该代码可以自由使用和修改,但任何基于此代码的衍生作品也必须遵循相同的许可证条款。

接下来的几行代码导入了三个组件:BOTSORTBYTETrackerregister_tracker。这些组件分别来自同一目录下的不同模块。BOTSORTBYTETracker可能是实现不同目标跟踪算法的类或函数,而register_tracker则可能是一个用于注册跟踪器的函数。

最后一行代码定义了__all__变量,这是一个特殊的变量,用于控制从模块中导入的内容。当使用from module import *语句时,只有在__all__中列出的名称会被导入。这使得模块的使用更加简洁,用户可以通过简单的导入语句来访问所需的功能,而不必关心模块内部的实现细节。

总的来说,这个初始化文件的主要功能是组织和简化模块的导入,使得用户能够方便地使用目标跟踪相关的功能。

11.3 ui.py
import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令,并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行的返回码,如果不为0则表示出错
    if result.returncode != 0:
        print("脚本运行出错。")


# 主程序入口
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 这里可以替换为实际的脚本路径

    # 调用函数运行脚本
    run_script(script_path)

代码注释说明:

  1. 导入模块

    • sys:用于访问与 Python 解释器紧密相关的变量和函数。
    • subprocess:用于生成新进程、连接到它们的输入/输出/错误管道,并获得它们的返回码。
  2. run_script 函数

    • 功能:使用当前 Python 环境运行指定的脚本。
    • 参数:script_path,表示要运行的脚本的路径。
    • 过程:
      • 获取当前 Python 解释器的路径,以确保使用正确的 Python 环境。
      • 构建一个命令字符串,该命令将使用 streamlit 模块运行指定的脚本。
      • 使用 subprocess.run 执行构建的命令,并等待其完成。
      • 检查命令的返回码,如果返回码不为0,表示脚本运行过程中出现错误,打印错误信息。
  3. 主程序入口

    • 使用 if __name__ == "__main__": 确保该部分代码仅在直接运行脚本时执行,而不是作为模块导入时执行。
    • 指定要运行的脚本路径(在此示例中为 web.py)。
    • 调用 run_script 函数,传入脚本路径以执行该脚本。

这个程序文件的主要功能是通过当前的 Python 环境来运行一个指定的脚本,具体来说是一个名为 web.py 的脚本。程序首先导入了必要的模块,包括 sysossubprocess,这些模块提供了与系统交互的功能。abs_path 函数则是从 QtFusion.path 模块中导入的,用于获取文件的绝对路径。

run_script 函数中,首先获取当前 Python 解释器的路径,这样可以确保使用正确的 Python 环境来运行脚本。接着,构建一个命令字符串,这个命令会调用 streamlit 模块来运行指定的脚本。streamlit 是一个用于构建数据应用的流行库。

使用 subprocess.run 方法来执行构建好的命令,shell=True 参数允许在 shell 中执行命令。执行后,程序会检查返回的状态码,如果返回码不为零,表示脚本运行出错,此时会打印出错误信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该文件时才会执行后面的代码。这里指定了要运行的脚本路径 web.py,并调用 run_script 函数来执行这个脚本。

总体来说,这个程序是一个简单的脚本执行器,能够在当前 Python 环境中运行指定的 Streamlit 应用脚本。

11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\metrics.py

以下是代码中最核心的部分,并附上详细的中文注释:

import numpy as np
import torch

def box_iou(box1, box2, eps=1e-7):
    """
    计算两个边界框的交并比(IoU)。输入的边界框格式为 (x1, y1, x2, y2)。

    参数:
        box1 (torch.Tensor): 形状为 (N, 4) 的张量,表示 N 个边界框。
        box2 (torch.Tensor): 形状为 (M, 4) 的张量,表示 M 个边界框。
        eps (float, optional): 避免除以零的小值,默认为 1e-7。

    返回:
        (torch.Tensor): 形状为 (N, M) 的张量,包含 box1 和 box2 中每对边界框的 IoU 值。
    """

    # 获取边界框的坐标
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    
    # 计算交集面积
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp_(0).prod(2)

    # 计算 IoU = 交集 / (面积1 + 面积2 - 交集)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)

def bbox_iou(box1, box2, xywh=True, eps=1e-7):
    """
    计算 box1 (1, 4) 与 box2 (n, 4) 的交并比(IoU)。

    参数:
        box1 (torch.Tensor): 形状为 (1, 4) 的张量,表示单个边界框。
        box2 (torch.Tensor): 形状为 (n, 4) 的张量,表示 n 个边界框。
        xywh (bool, optional): 如果为 True,输入框为 (x, y, w, h) 格式;如果为 False,输入框为 (x1, y1, x2, y2) 格式。默认为 True。
        eps (float, optional): 避免除以零的小值,默认为 1e-7。

    返回:
        (torch.Tensor): IoU 值。
    """

    # 获取边界框的坐标
    if xywh:  # 从 (x, y, w, h) 转换为 (x1, y1, x2, y2)
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1 / 2, x1 + w1 / 2, y1 - h1 / 2, y1 + h1 / 2
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2 / 2, x2 + w2 / 2, y2 - h2 / 2, y2 + h2 / 2
    else:  # 输入框为 (x1, y1, x2, y2)
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)

    # 计算交集面积
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)

    # 计算并集面积
    union = (b1_x2 - b1_x1) * (b1_y2 - b1_y1 + eps) + (b2_x2 - b2_x1) * (b2_y2 - b2_y1 + eps) - inter + eps

    # 返回 IoU 值
    return inter / union

def compute_ap(recall, precision):
    """
    计算给定召回率和精确率曲线的平均精度(AP)。

    参数:
        recall (list): 召回率曲线。
        precision (list): 精确率曲线。

    返回:
        (float): 平均精度。
        (np.ndarray): 精确率包络曲线。
        (np.ndarray): 修改后的召回率曲线,前后添加了哨兵值。
    """

    # 在开头和结尾添加哨兵值
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # 计算精确率包络
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # 计算曲线下面积
    x = np.linspace(0, 1, 101)  # 101 点插值(COCO)
    ap = np.trapz(np.interp(x, mrec, mpre), x)  # 积分

    return ap, mpre, mrec

代码说明:

  1. box_iou: 计算两个边界框的交并比(IoU),使用 PyTorch 张量处理,支持多组边界框的计算。
  2. bbox_iou: 计算单个边界框与多个边界框的 IoU,支持两种输入格式(xywh 和 xyxy)。
  3. compute_ap: 计算平均精度(AP),用于评估目标检测模型的性能,基于召回率和精确率曲线。

这些函数是目标检测模型评估中非常重要的部分,能够帮助我们理解模型在不同情况下的表现。

这个程序文件是YOLOv8算法中的一个模块,主要用于计算模型验证的各种评估指标。文件中包含了多个函数和类,分别用于计算不同的指标,如交并比(IoU)、平均精度(AP)、混淆矩阵等。

首先,文件中定义了一些常量和导入必要的库,包括数学计算、图形绘制和深度学习框架PyTorch等。接着,定义了一些用于计算IoU的函数,如bbox_ioabox_ioubbox_iou等。这些函数可以处理不同格式的边界框(bounding box),并计算它们之间的重叠区域,以评估模型的检测性能。

接下来,文件中还定义了ConfusionMatrix类,用于计算和更新混淆矩阵。混淆矩阵是一个重要的工具,可以帮助分析模型在分类任务中的表现,包括真正例、假正例和假负例的数量。该类包含多个方法,用于处理分类和检测任务的预测结果,并绘制混淆矩阵的可视化图。

此外,文件中还实现了一些与评估指标相关的函数和类,如MetricDetMetricsSegmentMetricsPoseMetrics等。这些类提供了计算精度、召回率、F1分数等指标的方法,并能够处理不同的任务(如检测、分割和姿态估计)。每个类都包含了更新指标、计算平均值和返回结果的功能。

最后,文件中还定义了一些辅助函数,用于绘制精确度-召回率曲线、计算平均精度等。这些函数通过图形化的方式展示模型的性能,便于分析和调优。

总体来说,这个文件为YOLOv8模型提供了全面的评估指标计算和可视化功能,帮助研究人员和开发者更好地理解和改进模型的性能。

11.5 code\ultralytics\utils\callbacks\mlflow.py

以下是代码中最核心的部分,并附上详细的中文注释:

from ultralytics.utils import LOGGER, RUNS_DIR, SETTINGS, TESTS_RUNNING, colorstr

try:
    import os

    # 确保不是在测试环境中运行,且mlflow集成已启用
    assert not TESTS_RUNNING or "test_mlflow" in os.environ.get("PYTEST_CURRENT_TEST", "")
    assert SETTINGS["mlflow"] is True  # 验证mlflow集成是否启用
    import mlflow

    assert hasattr(mlflow, "__version__")  # 验证mlflow包已正确导入
    from pathlib import Path

    PREFIX = colorstr("MLflow: ")  # 设置日志前缀
    # 清理日志参数的函数,将元组中的键值对转换为浮点数
    SANITIZE = lambda x: {k.replace("(", "").replace(")", ""): float(v) for k, v in x.items()}

except (ImportError, AssertionError):
    mlflow = None  # 如果导入失败或断言失败,则mlflow为None


def on_pretrain_routine_end(trainer):
    """
    在预训练例程结束时,将训练参数记录到MLflow。

    此函数根据环境变量和训练器参数设置MLflow日志。它设置跟踪URI、实验名称和运行名称,
    然后在未激活的情况下启动MLflow运行。最后记录训练器的参数。

    参数:
        trainer (ultralytics.engine.trainer.BaseTrainer): 包含要记录的参数和参数的训练对象。

    全局变量:
        mlflow: 用于记录的mlflow模块。

    环境变量:
        MLFLOW_TRACKING_URI: MLflow跟踪的URI。如果未设置,默认为'runs/mlflow'。
        MLFLOW_EXPERIMENT_NAME: MLflow实验的名称。如果未设置,默认为trainer.args.project。
        MLFLOW_RUN: MLflow运行的名称。如果未设置,默认为trainer.args.name。
    """
    global mlflow

    # 获取跟踪URI,如果未设置则使用默认值
    uri = os.environ.get("MLFLOW_TRACKING_URI") or str(RUNS_DIR / "mlflow")
    LOGGER.debug(f"{PREFIX} tracking uri: {uri}")
    mlflow.set_tracking_uri(uri)

    # 设置实验和运行名称
    experiment_name = os.environ.get("MLFLOW_EXPERIMENT_NAME") or trainer.args.project or "/Shared/YOLOv8"
    run_name = os.environ.get("MLFLOW_RUN") or trainer.args.name
    mlflow.set_experiment(experiment_name)

    mlflow.autolog()  # 自动记录
    try:
        # 开始一个新的MLflow运行
        active_run = mlflow.active_run() or mlflow.start_run(run_name=run_name)
        LOGGER.info(f"{PREFIX}logging run_id({active_run.info.run_id}) to {uri}")
        if Path(uri).is_dir():
            LOGGER.info(f"{PREFIX}view at http://127.0.0.1:5000 with 'mlflow server --backend-store-uri {uri}'")
        LOGGER.info(f"{PREFIX}disable with 'yolo settings mlflow=False'")
        mlflow.log_params(dict(trainer.args))  # 记录训练参数
    except Exception as e:
        LOGGER.warning(f"{PREFIX}WARNING ⚠️ Failed to initialize: {e}\n" f"{PREFIX}WARNING ⚠️ Not tracking this run")


def on_train_end(trainer):
    """在训练结束时记录模型工件。"""
    if mlflow:
        # 记录最佳模型和最后模型的文件
        mlflow.log_artifact(str(trainer.best.parent))  # 记录保存目录
        for f in trainer.save_dir.glob("*"):  # 记录保存目录中的所有文件
            if f.suffix in {".png", ".jpg", ".csv", ".pt", ".yaml"}:
                mlflow.log_artifact(str(f))

        mlflow.end_run()  # 结束当前运行
        LOGGER.info(
            f"{PREFIX}results logged to {mlflow.get_tracking_uri()}\n"
            f"{PREFIX}disable with 'yolo settings mlflow=False'"
        )


# 定义回调函数,如果mlflow可用则注册
callbacks = (
    {
        "on_pretrain_routine_end": on_pretrain_routine_end,
        "on_train_end": on_train_end,
    }
    if mlflow
    else {}
)

代码说明:

  1. 导入模块:导入必要的模块和工具,包括mlflow用于记录实验信息。
  2. 环境变量和设置检查:确保在正确的环境中运行,并检查MLflow集成是否启用。
  3. 日志记录功能:定义了on_pretrain_routine_endon_train_end两个函数,分别在预训练结束和训练结束时记录参数和模型工件。
  4. 回调函数:根据MLflow的可用性注册回调函数,以便在训练过程中自动记录信息。

这个程序文件是用于Ultralytics YOLO模型的MLflow日志记录功能。MLflow是一个开源平台,用于管理机器学习实验,包括记录模型的参数、指标和工件等。该模块的主要目的是在YOLO训练过程中自动记录相关信息,以便后续分析和可视化。

文件的开头部分包含了一些文档字符串,描述了如何设置和使用MLflow,包括如何设置项目名称、运行名称、启动本地MLflow服务器以及如何终止正在运行的MLflow实例。这些信息为用户提供了基本的使用指南。

接下来,程序尝试导入必要的库,并进行一些基本的检查。首先,它会检查是否在测试环境中运行,如果是,则不会记录日志。然后,它会确认MLflow集成是否已启用,并确保mlflow模块已正确导入。通过这些检查,程序确保在不适合记录的情况下不会产生错误。

程序定义了几个主要的回调函数,用于在不同的训练阶段记录信息。on_pretrain_routine_end函数在预训练结束时被调用,它会设置MLflow的跟踪URI、实验名称和运行名称,并启动一个新的MLflow运行。然后,它会记录训练器的参数。

on_train_epoch_endon_fit_epoch_end函数分别在每个训练和拟合的epoch结束时被调用,记录训练指标和学习率等信息。这些函数利用了一个名为SANITIZE的lambda函数,确保记录的数据格式正确。

最后,on_train_end函数在训练结束时被调用,记录模型的工件,包括最佳模型和其他相关文件。所有记录的文件会被上传到MLflow,以便用户后续查看和分析。

在文件的末尾,定义了一个回调字典,包含了在MLflow可用时需要调用的函数。如果MLflow不可用,则该字典为空,这样可以避免在没有MLflow支持的情况下调用这些函数。

总体来说,这个文件实现了YOLO模型训练过程中的自动化日志记录,方便用户追踪和管理他们的机器学习实验。

11.6 train.py

以下是经过简化并添加详细中文注释的核心代码部分:

import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    扩展自 BaseTrainer 类的检测模型训练类。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建 YOLO 数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,可以是 'train' 或 'val',用于自定义不同的增强方法。
            batch (int, optional): 批次大小,仅用于 'rect' 模式。默认为 None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构建并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 仅在 DDP 中初始化数据集 *.cache 一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 根据模式设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:  # 如果需要缩放
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值缩放
            batch["img"] = imgs  # 更新批次图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回 YOLO 检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从 CSV 文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码说明:

  1. DetectionTrainer:这是一个用于训练检测模型的类,继承自 BaseTrainer
  2. build_dataset 方法:构建 YOLO 数据集,接受图像路径、模式和批次大小作为参数。
  3. get_dataloader 方法:构建并返回数据加载器,确保在分布式训练中只初始化一次数据集。
  4. preprocess_batch 方法:对图像批次进行预处理,包括归一化和可能的缩放。
  5. get_model 方法:返回一个 YOLO 检测模型,并可选择加载预训练权重。
  6. plot_training_samplesplot_metrics 方法:用于可视化训练样本和训练指标的函数。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的 Python 脚本,主要是基于 Ultralytics 提供的库。该文件定义了一个名为 DetectionTrainer 的类,该类继承自 BaseTrainer,用于实现目标检测模型的训练过程。

DetectionTrainer 类中,首先定义了多个方法来处理数据集的构建、数据加载、批处理预处理、模型属性设置、模型获取、验证器获取、损失项标签化、训练进度字符串生成、训练样本绘图以及绘制训练指标等功能。

build_dataset 方法用于构建 YOLO 数据集,接受图像路径、模式(训练或验证)和批量大小作为参数。该方法会根据模型的步幅(stride)计算最大值,并调用 build_yolo_dataset 函数来生成数据集。

get_dataloader 方法用于构建并返回数据加载器。它会根据传入的模式(训练或验证)来初始化数据集,并设置是否打乱数据的顺序。对于训练模式,数据会被打乱,而在验证模式下则不会。

preprocess_batch 方法负责对图像批次进行预处理,包括缩放和转换为浮点数格式。该方法支持多尺度训练,随机选择一个大小并调整图像的尺寸。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等,以确保模型与数据集的兼容性。

get_model 方法用于返回一个 YOLO 检测模型,并可选择加载预训练权重。

get_validator 方法返回一个用于验证 YOLO 模型的验证器,主要用于评估模型的性能。

label_loss_items 方法用于返回带有标签的训练损失项字典,便于后续的损失分析。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注,帮助可视化训练过程中的数据。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带标签的训练图,便于分析模型的训练效果。

整体来看,这个文件提供了一个结构化的框架,用于训练 YOLO 模型,涵盖了从数据处理到模型训练和评估的各个方面,适合需要进行目标检测任务的开发者使用。

12.系统整体结构(节选)

整体功能和构架概括

Ultralytics YOLOv8 是一个强大的目标检测框架,旨在提供高效、易用的工具来进行目标检测、跟踪和评估。整个项目的架构分为多个模块,每个模块负责特定的功能。以下是对主要模块的概述:

  • 模型与检测predict.py 负责模型的预测过程,包括后处理和结果封装。
  • 跟踪器__init__.py 负责初始化跟踪器模块,提供不同跟踪算法的接口。
  • 用户界面ui.py 用于运行 Streamlit 应用,提供用户交互界面。
  • 评估指标metrics.py 提供了计算模型性能评估指标的功能,如 IoU、AP 等。
  • 回调函数mlflow.py 负责与 MLflow 集成,记录训练过程中的各种信息。
  • 训练过程train.py 是训练模型的核心文件,处理数据加载、模型设置和训练循环。
  • 数据探索explorer.py 提供数据集的可视化和探索功能。
  • 对象计数object_counter.py 实现了对象计数的功能,基于检测结果进行统计。
  • 结果处理results.py 处理模型的输出结果,提供结果的封装和可视化。
  • 模型导出exporter.py 负责将训练好的模型导出为不同格式,便于部署。
  • 初始化__init__.py 负责模块的整体初始化,提供对外接口。
  • Hub 回调hub.py 提供与模型 Hub 的集成,便于模型的共享和管理。
  • 编码器模块tiny_encoder.py 实现了一个轻量级的编码器,用于特定的模型任务。

文件功能整理表

文件路径功能描述
code\ultralytics\models\yolo\detect\predict.py处理模型预测,后处理预测结果并封装为易用格式。
code\ultralytics\trackers\__init__.py初始化跟踪器模块,提供不同跟踪算法的接口。
ui.py运行 Streamlit 应用,提供用户交互界面。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\metrics.py计算模型性能评估指标,如 IoU、AP 等。
code\ultralytics\utils\callbacks\mlflow.py与 MLflow 集成,记录训练过程中的信息。
train.py训练 YOLO 模型,处理数据加载和训练循环。
code\ultralytics\data\explorer\explorer.py提供数据集的可视化和探索功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\solutions\object_counter.py实现对象计数功能,基于检测结果进行统计。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\engine\results.py处理模型输出结果,提供结果的封装和可视化。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\engine\exporter.py导出训练好的模型为不同格式,便于部署。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\__init__.py模块的整体初始化,提供对外接口。
code\ultralytics\utils\callbacks\hub.py与模型 Hub 集成,便于模型的共享和管理。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\sam\modules\tiny_encoder.py实现轻量级编码器,用于特定模型任务。

这个表格总结了各个文件的主要功能,便于理解整个项目的结构和各个模块之间的关系。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/Merged-Roblox-and-Ship584

参考原始博客2: https://github.com/VisionMillionDataStudio/Merged-Roblox-and-Ship584

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值