日常物品检测系统源码分享

日常物品检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着人工智能技术的迅猛发展,计算机视觉作为其重要分支之一,正逐渐渗透到我们日常生活的各个领域。物体检测技术,尤其是在智能监控、自动驾驶、智能家居等应用场景中,发挥着越来越重要的作用。YOLO(You Only Look Once)系列模型因其高效的实时检测能力和较高的准确率,成为了物体检测领域的研究热点。YOLOv8作为该系列的最新版本,结合了深度学习的最新进展,展现出了更强的性能和更广泛的应用潜力。然而,尽管YOLOv8在许多复杂场景中表现出色,但在日常物品的检测任务中,仍然存在一些挑战,尤其是在物品种类繁多、背景复杂的情况下。

本研究旨在基于改进的YOLOv8模型,构建一个高效的日常物品检测系统。我们所使用的数据集包含4404张图像,涵盖了7个类别的物品,包括书籍、瓶子、手机、椅子、笔和人。这些物品在日常生活中频繁出现,且具有一定的多样性和复杂性。通过对这些物品的检测,不仅可以提升物体识别的准确性,还能为后续的智能应用提供基础数据支持。例如,在智能家居系统中,准确识别家居物品可以实现更为智能的家居管理和服务;在零售行业,物品检测可以帮助商家进行库存管理和顾客行为分析。

在此背景下,改进YOLOv8模型的必要性愈发凸显。我们计划通过优化模型结构、调整超参数以及增强数据集等手段,提升模型在日常物品检测中的表现。具体而言,针对数据集中物品类别的多样性和图像背景的复杂性,我们将采用数据增强技术,以增加模型的鲁棒性。此外,针对YOLOv8在小物体检测方面的不足,我们将引入特征金字塔网络(FPN)等技术,以提高模型对小物体的识别能力。

本研究的意义不仅在于提升YOLOv8在日常物品检测任务中的性能,更在于为物体检测技术的实际应用提供新的思路和方法。通过构建一个高效的日常物品检测系统,我们希望能够推动物体检测技术在智能家居、安防监控、智能零售等领域的广泛应用,进而提升人们的生活质量和工作效率。此外,本研究的成果还将为后续的相关研究提供有价值的参考,促进物体检测技术的进一步发展。

综上所述,基于改进YOLOv8的日常物品检测系统的研究,不仅具有重要的理论价值,也具备广泛的应用前景。通过对日常物品的精准识别与检测,我们将为智能化社会的构建贡献一份力量。

2.图片演示

![### 5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8作为YOLO系列的最新版本,标志着目标检测技术的又一次重要进步。它不仅在算法结构上进行了深度优化,还在特征提取和目标检测的效率上实现了显著提升。YOLOv8的核心思想依然是将目标检测视为一个回归问题,直接从图像像素到边界框和类别概率的映射,而不依赖于传统的滑动窗口或区域提议方法。这种方法使得YOLOv8在速度和精度上都表现得更加优越。

在YOLOv8的架构中,模型主要由三个部分组成:Backbone、Neck和Head。Backbone负责特征提取,采用了CSPDarknet(Cross Stage Partial Darknet)结构。该结构的设计理念是通过分段的方式将网络分为两个部分,每个部分都包含多个残差块,以此来提高特征提取的效率和深度。相较于前代模型YOLOv5,YOLOv8引入了C2f模块,替代了C3模块。C2f模块的独特之处在于它将输入特征图分为两个分支,每个分支经过卷积层进行降维处理,同时通过v8_C2fBottleneck层进行特征的进一步提炼和融合。这种设计不仅增强了特征图的维度,也提升了梯度流的传递效率,使得模型在训练过程中能够更好地捕捉到重要的特征信息。

在特征提取的过程中,YOLOv8还引入了快速空间金字塔池化(SPPF)结构。这一结构的优势在于能够有效提取不同尺度的特征,同时减少模型的参数量和计算量。通过这种方式,YOLOv8在处理多尺度目标时,能够更灵活地适应不同大小的物体,从而提高了检测的准确性和鲁棒性。

在目标检测部分,YOLOv8采用了特征金字塔网络(FPN)与路径聚合网络(PAN)的结合。这一结构通过多个卷积层和池化层对特征图进行处理和压缩,确保了不同层次的特征信息能够有效地融合在一起。最终,YOLOv8通过全连接层将处理后的特征图转换为目标检测结果,直接预测目标的中心点及其宽高比例。这种基于无锚框(Anchor-Free)的检测方式,不仅减少了Anchor框的数量,还显著提高了检测速度和准确度。

YOLOv8在训练过程中引入了多尺度训练和测试的策略,这使得模型在面对不同尺寸的目标时,能够保持较高的检测性能。通过在不同尺度下进行训练,YOLOv8能够学习到更丰富的特征表示,从而在实际应用中表现得更加灵活和高效。

值得一提的是,YOLOv8在性能上也取得了显著的提升。与之前的版本相比,YOLOv8在精度(mAP)和帧率上均呈现出递增的趋势。与SSD等传统目标检测算法相比,YOLOv8的精度提高了43.23%,帧率则提升了10.28倍。这一系列的改进使得YOLOv8在各种应用场景中,如智能监控、自动驾驶和人脸识别等,均能展现出优异的性能。

总的来说,YOLOv8的原始算法原理在于通过深度的卷积神经网络结构,结合高效的特征提取和目标检测机制,实现了对目标的快速、准确检测。其创新的C2f模块、SPPF结构以及无锚框检测方式,均为提升模型性能提供了强有力的支持。随着YOLOv8的推出,目标检测技术进入了一个新的阶段,未来在更多复杂场景中的应用潜力也将不断被挖掘和拓展。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是对给定代码的核心部分进行提炼和详细注释的版本:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行结果,如果返回码不为0,则表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 主程序入口
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 这里假设脚本在当前目录下

    # 调用函数运行脚本
    run_script(script_path)

代码核心部分说明:

  1. 导入模块

    • sys:用于获取当前 Python 解释器的路径。
    • subprocess:用于执行外部命令。
  2. run_script 函数

    • 接收一个脚本路径作为参数,并在当前 Python 环境中运行该脚本。
    • 使用 sys.executable 获取当前 Python 解释器的路径,以确保使用正确的 Python 环境。
    • 构建一个命令字符串,使用 streamlit 运行指定的脚本。
    • 使用 subprocess.run 执行构建的命令,并检查返回码以判断脚本是否成功运行。
  3. 主程序入口

    • 当脚本作为主程序运行时,指定要运行的脚本路径(这里假设为 web.py)。
    • 调用 run_script 函数执行指定的脚本。

注意事项:

  • 该代码假设 web.py 脚本在当前工作目录下,实际使用时可以根据需要调整路径。
  • subprocess.runshell=True 参数使得命令在 shell 中执行,可能存在安全隐患,特别是当脚本路径来自不可信的输入时。

这个程序文件名为 ui.py,其主要功能是通过当前的 Python 环境运行一个指定的脚本,具体来说是一个名为 web.py 的脚本。文件中首先导入了必要的模块,包括 sysossubprocess,这些模块分别用于访问系统特性、操作系统功能和执行外部命令。

在文件的主体部分,定义了一个名为 run_script 的函数,该函数接受一个参数 script_path,表示要运行的脚本的路径。函数内部首先获取当前 Python 解释器的路径,使用 sys.executable 可以获取到当前 Python 环境的可执行文件路径。接着,构建一个命令字符串,使用 streamlit 模块来运行指定的脚本。命令的格式是 "{python_path}" -m streamlit run "{script_path}",其中 {python_path}{script_path} 分别被替换为实际的 Python 解释器路径和脚本路径。

随后,使用 subprocess.run 方法执行构建好的命令。这个方法会在一个新的进程中运行命令,并等待其完成。如果命令执行的返回码不为零,表示脚本运行过程中出现了错误,程序会打印出“脚本运行出错”的提示信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该文件时才会执行以下代码。这部分代码指定了要运行的脚本路径,这里使用了 abs_path 函数来获取 web.py 的绝对路径。然后调用 run_script 函数来执行这个脚本。

总体来说,这个程序的功能是封装了一个简单的命令行工具,用于启动一个基于 Streamlit 的 Web 应用,提供了一种便捷的方式来运行 Python 脚本。

11.2 predict.py

以下是代码中最核心的部分,并附上详细的中文注释:

from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import ops

class DetectionPredictor(BasePredictor):
    """
    DetectionPredictor类扩展了BasePredictor类,用于基于检测模型进行预测。
    """

    def postprocess(self, preds, img, orig_imgs):
        """对预测结果进行后处理,并返回Results对象的列表。"""
        
        # 使用非极大值抑制(NMS)来过滤重叠的检测框
        preds = ops.non_max_suppression(
            preds,  # 预测框
            self.args.conf,  # 置信度阈值
            self.args.iou,  # IOU阈值
            agnostic=self.args.agnostic_nms,  # 是否使用类别无关的NMS
            max_det=self.args.max_det,  # 最大检测框数量
            classes=self.args.classes,  # 需要检测的类别
        )

        # 如果输入的原始图像不是列表,说明它是一个torch.Tensor,需要转换为numpy数组
        if not isinstance(orig_imgs, list):
            orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)

        results = []  # 存储处理后的结果
        for i, pred in enumerate(preds):  # 遍历每个预测结果
            orig_img = orig_imgs[i]  # 获取对应的原始图像
            # 将预测框的坐标从缩放后的图像大小转换回原始图像大小
            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
            img_path = self.batch[0][i]  # 获取图像路径
            # 创建Results对象并添加到结果列表中
            results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
        
        return results  # 返回处理后的结果列表

代码注释说明:

  1. 导入模块:导入必要的类和函数,以便在后续的代码中使用。
  2. DetectionPredictor类:这是一个扩展自BasePredictor的类,专门用于处理检测模型的预测。
  3. postprocess方法:该方法用于对模型的预测结果进行后处理,包括非极大值抑制和坐标缩放等操作。
  4. 非极大值抑制:通过ops.non_max_suppression函数来过滤掉重叠的检测框,保留最有可能的检测结果。
  5. 图像格式转换:如果原始图像不是列表格式,则将其转换为numpy数组,以便后续处理。
  6. 结果收集:遍历每个预测结果,调整预测框的坐标,并将每个结果存储在Results对象中,最终返回所有结果的列表。

这个程序文件 predict.py 是一个用于目标检测的预测类,名为 DetectionPredictor,它继承自 BasePredictor 类。该类的主要功能是基于给定的检测模型进行预测,并对预测结果进行后处理。

在文件的开头,导入了必要的模块,包括 BasePredictorResults 和一些实用的操作函数 ops。这些模块来自于 ultralytics 库,后者是一个用于实现 YOLO(You Only Look Once)目标检测算法的框架。

DetectionPredictor 类的文档字符串中提供了一个使用示例,展示了如何使用该类进行预测。示例中,首先导入必要的模块,然后创建一个包含模型路径和数据源的参数字典 args。接着,实例化 DetectionPredictor 对象,并调用 predict_cli() 方法进行预测。

类中的 postprocess 方法是核心功能之一,它负责对模型的预测结果进行后处理。该方法接受三个参数:preds(模型的预测结果)、img(输入图像)和 orig_imgs(原始图像)。在方法内部,首先调用 ops.non_max_suppression 函数对预测结果进行非极大值抑制,以去除冗余的框,保留最有可能的检测结果。这个过程使用了一些参数,如置信度阈值、IOU(Intersection over Union)阈值、是否使用类别无关的 NMS 以及最大检测数量等。

接下来,方法检查 orig_imgs 是否为列表,如果不是,则将其转换为 NumPy 数组。然后,方法遍历每个预测结果,并根据原始图像的尺寸对预测框进行缩放。最后,将每个预测结果封装成 Results 对象,并返回一个包含所有结果的列表。

总体而言,这个文件定义了一个用于目标检测的预测类,能够处理模型的输出并生成可用的检测结果,适合于在图像上进行目标检测任务。

11.3 code\ultralytics\utils\downloads.py

以下是经过简化并注释的核心代码部分,主要保留了文件下载、解压和相关的辅助函数:

import contextlib
import re
import shutil
import subprocess
from pathlib import Path
from urllib import parse, request
import requests
import torch
from ultralytics.utils import LOGGER, TQDM

def is_url(url, check=True):
    """
    验证给定字符串是否为有效的URL,并可选地检查该URL是否在线。

    Args:
        url (str): 要验证的字符串。
        check (bool, optional): 如果为True,则检查URL是否在线。默认值为True。

    Returns:
        (bool): 如果字符串是有效的URL,则返回True。如果'check'为True,还会检查URL是否在线。
    """
    with contextlib.suppress(Exception):
        url = str(url)
        result = parse.urlparse(url)
        assert all([result.scheme, result.netloc])  # 检查是否为URL
        if check:
            with request.urlopen(url) as response:
                return response.getcode() == 200  # 检查URL是否存在
        return True
    return False

def safe_download(url, file=None, dir=None, unzip=True, delete=False, retry=3, progress=True):
    """
    从URL下载文件,支持重试、解压和删除下载的文件。

    Args:
        url (str): 要下载的文件的URL。
        file (str, optional): 下载文件的文件名。如果未提供,将使用URL中的文件名。
        dir (str, optional): 保存下载文件的目录。如果未提供,将保存在当前工作目录中。
        unzip (bool, optional): 是否解压下载的文件。默认值为True。
        delete (bool, optional): 是否在解压后删除下载的文件。默认值为False。
        retry (int, optional): 下载失败时的重试次数。默认值为3。
        progress (bool, optional): 是否在下载过程中显示进度条。默认值为True。

    Returns:
        (Path): 解压后的目录路径。
    """
    f = Path(dir or ".") / (file or url2file(url))  # 生成文件路径
    if not f.is_file():  # 如果文件不存在
        desc = f"Downloading {url} to '{f}'"
        LOGGER.info(f"{desc}...")
        f.parent.mkdir(parents=True, exist_ok=True)  # 创建目录
        for i in range(retry + 1):
            try:
                # 使用torch下载文件
                torch.hub.download_url_to_file(url, f, progress=progress)
                if f.exists() and f.stat().st_size > 0:  # 检查文件是否成功下载
                    break
            except Exception as e:
                if i >= retry:
                    raise ConnectionError(f"下载失败: {url}") from e
                LOGGER.warning(f"下载失败,重试 {i + 1}/{retry} {url}...")

    if unzip and f.exists() and f.suffix in (".zip", ".tar", ".gz"):
        unzip_dir = dir or f.parent  # 解压到指定目录或当前目录
        unzip_file(file=f, path=unzip_dir)  # 解压文件
        if delete:
            f.unlink()  # 删除zip文件
    return unzip_dir

def unzip_file(file, path=None):
    """
    解压缩指定的zip文件到指定路径。

    Args:
        file (str): 要解压的zip文件路径。
        path (str, optional): 解压到的目标路径。如果未提供,使用zip文件的父目录。

    Returns:
        (Path): 解压后的目录路径。
    """
    from zipfile import ZipFile
    if path is None:
        path = Path(file).parent  # 默认路径为zip文件的父目录

    with ZipFile(file) as zipObj:
        zipObj.extractall(path)  # 解压所有文件
    return path  # 返回解压目录路径

代码说明

  1. is_url: 该函数用于验证给定字符串是否为有效的URL,并可选择性地检查该URL是否在线。
  2. safe_download: 该函数负责从指定的URL下载文件,支持重试机制、解压缩文件以及在解压后删除原始压缩文件。
  3. unzip_file: 该函数用于解压缩指定的zip文件到给定的路径。

以上是代码的核心部分,其他辅助功能和具体实现细节可以根据需要进行扩展。

这个程序文件 downloads.py 是 Ultralytics YOLO 项目的一部分,主要用于处理文件的下载、解压和相关的文件管理操作。以下是对代码的详细说明。

首先,文件导入了一些必要的库,包括处理文件路径的 Path、进行网络请求的 requests、以及用于多线程处理的 ThreadPool。此外,还引入了一些 Ultralytics 自定义的工具函数和日志记录器。

文件中定义了一些常量,主要是 GitHub 上的模型文件名和路径。这些文件名包括不同版本的 YOLO 模型和其他相关模型,方便后续的下载和管理。

接下来,定义了一些函数:

  1. is_url:验证给定字符串是否为有效的 URL,并可选择性地检查该 URL 是否在线。使用 urlparse 解析 URL,并通过 urlopen 检查其状态码。

  2. delete_dsstore:删除指定目录下的 .DS_Store 文件,这些文件是 macOS 系统生成的隐藏文件,可能在不同操作系统间传输时造成问题。

  3. zip_directory:将指定目录的内容压缩为 ZIP 文件,支持排除特定文件,并可选择显示进度条。

  4. unzip_file:解压缩 ZIP 文件到指定路径,支持排除特定文件,并处理文件夹结构。

  5. check_disk_space:检查是否有足够的磁盘空间来下载文件。根据文件的大小和一个安全因子,判断是否可以继续下载。

  6. get_google_drive_file_info:从 Google Drive 的分享链接中提取直接下载链接和文件名,处理下载配额超限的情况。

  7. safe_download:从 URL 下载文件,支持重试、解压和删除下载后的文件。根据 URL 类型(如 Google Drive)处理不同的下载逻辑。

  8. get_github_assets:从指定的 GitHub 仓库获取版本标签和资产列表,支持获取最新版本的资产。

  9. attempt_download_asset:尝试从 GitHub 下载指定的文件,如果本地不存在则进行下载,支持处理 URL 和文件名。

  10. download:下载指定 URL 的文件,支持并发下载,处理解压和删除 ZIP 文件的选项。

整体来看,这个文件提供了一系列工具函数,方便用户从网络上下载模型文件、处理文件和目录的管理,以及确保下载过程的顺利进行。通过这些函数,用户可以方便地获取和管理机器学习模型,尤其是在使用 YOLO 系列模型时。

11.4 code\ultralytics\utils\callbacks\raytune.py

以下是经过简化和注释的核心代码部分:

# 导入必要的库和模块
from ultralytics.utils import SETTINGS

# 尝试导入Ray和Tune库,并验证Ray Tune集成是否启用
try:
    assert SETTINGS["raytune"] is True  # 确保Ray Tune集成已启用
    import ray
    from ray import tune
    from ray.air import session
except (ImportError, AssertionError):
    tune = None  # 如果导入失败或集成未启用,则将tune设置为None

def on_fit_epoch_end(trainer):
    """在每个训练周期结束时,将训练指标发送到Ray Tune。"""
    if ray.tune.is_session_enabled():  # 检查Ray Tune会话是否启用
        metrics = trainer.metrics  # 获取当前训练指标
        metrics["epoch"] = trainer.epoch  # 将当前周期数添加到指标中
        session.report(metrics)  # 向Ray Tune报告指标

# 定义回调函数,如果tune可用,则包含on_fit_epoch_end回调
callbacks = (
    {
        "on_fit_epoch_end": on_fit_epoch_end,  # 训练周期结束时的回调
    }
    if tune
    else {}  # 如果tune不可用,则回调为空
)

代码注释说明:

  1. 导入模块:首先导入必要的模块和设置。
  2. 集成验证:通过assert语句检查Ray Tune的集成是否启用,如果未启用或导入失败,则将tune设置为None
  3. 回调函数:定义on_fit_epoch_end函数,该函数在每个训练周期结束时被调用,用于将训练指标发送到Ray Tune。
  4. 指标报告:在回调函数中,检查Ray Tune会话是否启用,如果启用,则获取当前的训练指标并报告。
  5. 回调字典:根据tune的可用性定义回调字典,如果tune可用,则包含on_fit_epoch_end回调。

这个程序文件是用于集成Ultralytics YOLO与Ray Tune的回调函数,主要目的是在每个训练周期结束时将训练指标发送到Ray Tune,以便进行超参数调优和模型性能监控。

首先,文件引入了Ultralytics的设置模块SETTINGS,并通过一个try语句块来检查Ray Tune的集成是否启用。具体来说,它通过断言SETTINGS["raytune"]是否为True来验证这一点。如果集成启用,则导入Ray库及其相关模块tunesession。如果导入失败或集成未启用,则将tune设置为None

接下来,定义了一个名为on_fit_epoch_end的函数,这个函数在每个训练周期结束时被调用。函数内部首先检查Ray Tune的会话是否已启用。如果启用,则从训练器trainer中获取当前的训练指标,并将当前的周期数添加到指标中。最后,使用session.report(metrics)将这些指标报告给Ray Tune。

最后,文件定义了一个名为callbacks的元组。如果tune被成功导入(即Ray Tune集成可用),则将on_fit_epoch_end函数作为回调函数添加到元组中;否则,callbacks将是一个空字典。这种设计使得在使用Ray Tune时能够灵活地添加训练回调,而在不使用时则不会影响程序的其他部分。

11.5 code\ultralytics\models\yolo\pose\val.py

以下是代码中最核心的部分,并附上详细的中文注释:

class PoseValidator(DetectionValidator):
    """
    PoseValidator类,继承自DetectionValidator类,用于基于姿态模型的验证。
    """

    def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
        """初始化PoseValidator对象,设置自定义参数和属性。"""
        super().__init__(dataloader, save_dir, pbar, args, _callbacks)  # 调用父类构造函数
        self.sigma = None  # 初始化sigma,用于计算关键点的OKS
        self.kpt_shape = None  # 初始化关键点形状
        self.args.task = "pose"  # 设置任务类型为姿态估计
        self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot)  # 初始化姿态评估指标

    def preprocess(self, batch):
        """预处理批次数据,将关键点数据转换为浮点数并移动到指定设备。"""
        batch = super().preprocess(batch)  # 调用父类的预处理方法
        batch["keypoints"] = batch["keypoints"].to(self.device).float()  # 将关键点数据移动到设备并转换为浮点数
        return batch

    def postprocess(self, preds):
        """应用非极大值抑制,返回高置信度的检测结果。"""
        return ops.non_max_suppression(
            preds,
            self.args.conf,  # 置信度阈值
            self.args.iou,  # IOU阈值
            labels=self.lb,
            multi_label=True,
            agnostic=self.args.single_cls,
            max_det=self.args.max_det,
            nc=self.nc,
        )

    def update_metrics(self, preds, batch):
        """更新评估指标。"""
        for si, pred in enumerate(preds):  # 遍历每个预测结果
            self.seen += 1  # 记录已处理的样本数量
            npr = len(pred)  # 当前预测的数量
            stat = dict(
                conf=torch.zeros(0, device=self.device),  # 初始化置信度
                pred_cls=torch.zeros(0, device=self.device),  # 初始化预测类别
                tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),  # 初始化真阳性
                tp_p=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),  # 初始化姿态真阳性
            )
            pbatch = self._prepare_batch(si, batch)  # 准备当前批次数据
            cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")  # 获取类别和边界框
            
            if npr == 0:  # 如果没有预测结果
                if len(cls):  # 如果有真实类别
                    for k in self.stats.keys():
                        self.stats[k].append(stat[k])  # 更新统计信息
                continue  # 跳过当前循环

            predn, pred_kpts = self._prepare_pred(pred, pbatch)  # 准备预测结果和关键点
            stat["conf"] = predn[:, 4]  # 获取置信度
            stat["pred_cls"] = predn[:, 5]  # 获取预测类别

            if len(cls):  # 如果有真实类别
                stat["tp"] = self._process_batch(predn, bbox, cls)  # 处理边界框
                stat["tp_p"] = self._process_batch(predn, bbox, cls, pred_kpts, pbatch["kpts"])  # 处理关键点
            for k in self.stats.keys():
                self.stats[k].append(stat[k])  # 更新统计信息

    def _process_batch(self, detections, gt_bboxes, gt_cls, pred_kpts=None, gt_kpts=None):
        """
        返回正确的预测矩阵。

        参数:
            detections (torch.Tensor): 形状为[N, 6]的检测结果张量。
            gt_bboxes (torch.Tensor): 形状为[M, 5]的真实标签张量。
            pred_kpts (torch.Tensor, 可选): 形状为[N, 51]的预测关键点张量。
            gt_kpts (torch.Tensor, 可选): 形状为[N, 51]的真实关键点张量。

        返回:
            torch.Tensor: 形状为[N, 10]的正确预测矩阵,表示10个IOU水平。
        """
        if pred_kpts is not None and gt_kpts is not None:
            area = ops.xyxy2xywh(gt_bboxes)[:, 2:].prod(1) * 0.53  # 计算面积
            iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area)  # 计算关键点IOU
        else:  # 处理边界框
            iou = box_iou(gt_bboxes, detections[:, :4])  # 计算边界框IOU

        return self.match_predictions(detections[:, 5], gt_cls, iou)  # 匹配预测结果与真实标签

以上代码展示了PoseValidator类的核心功能,包括初始化、数据预处理、后处理、指标更新和批次处理等。每个方法都附有详细的中文注释,帮助理解其功能和实现逻辑。

这个程序文件定义了一个名为 PoseValidator 的类,继承自 DetectionValidator,用于基于姿态模型的验证。程序首先导入了一些必要的库和模块,包括路径处理、NumPy、PyTorch,以及Ultralytics YOLO模型中的一些功能模块。

PoseValidator 类的构造函数中,初始化了一些属性,包括任务类型设置为“pose”,并创建了一个用于姿态评估的指标对象 PoseMetrics。如果设备是 Apple 的 MPS,程序会发出警告,建议使用 CPU 进行姿态模型的计算。

类中有多个方法,其中 preprocess 方法用于对输入批次进行预处理,将关键点数据转换为浮点数并移动到指定设备。get_desc 方法返回评估指标的描述字符串,便于在输出中显示。

postprocess 方法实现了非极大值抑制,返回高置信度的检测结果。init_metrics 方法用于初始化姿态估计的指标,设置关键点的形状和相关参数。

_prepare_batch_prepare_pred 方法分别用于准备输入批次和预测结果,确保关键点数据被正确处理和缩放。update_metrics 方法则用于更新模型的评估指标,处理每个批次的预测结果和真实标签,并根据需要保存结果。

_process_batch 方法用于计算正确的预测矩阵,考虑到关键点和边界框的 IOU(交并比)值。plot_val_samplesplot_predictions 方法用于可视化验证样本和模型的预测结果,生成带有预测边界框和关键点的图像。

pred_to_json 方法将 YOLO 的预测结果转换为 COCO JSON 格式,以便于后续评估。eval_json 方法则使用 COCO 格式的 JSON 文件评估目标检测模型的性能,计算 mAP(平均精度均值)等指标,并在日志中输出结果。

总体来说,这个文件的主要功能是实现基于姿态估计的验证过程,提供了数据预处理、指标计算、结果可视化和评估等一系列功能,旨在帮助用户评估和优化姿态检测模型的性能。

11.6 train.py

以下是经过简化和注释的核心代码部分,主要集中在YOLO检测模型的训练过程中:

import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类,继承自BaseTrainer,用于基于YOLO模型的目标检测训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 图像文件夹的路径。
            mode (str): 模式,'train'表示训练模式,'val'表示验证模式。
            batch (int, optional): 批次大小,适用于'val'模式。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构建并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 仅在DDP中初始化数据集
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转移到设备并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 调整图像大小
            batch["img"] = imgs  # 更新批次图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制训练样本及其标注。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从CSV文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码注释说明:

  1. DetectionTrainer类:该类用于训练YOLO目标检测模型,继承自基础训练类BaseTrainer
  2. build_dataset方法:构建YOLO数据集,接收图像路径、模式和批次大小作为参数。
  3. get_dataloader方法:构建数据加载器,确保在分布式训练中只初始化一次数据集。
  4. preprocess_batch方法:对图像批次进行预处理,包括归一化和可能的多尺度调整。
  5. get_model方法:返回YOLO检测模型,并可选择加载预训练权重。
  6. plot_training_samples方法:绘制训练样本及其对应的标注,便于可视化训练效果。
  7. plot_metrics方法:从CSV文件中绘制训练过程中的指标,便于分析模型性能。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的实现,继承自 BaseTrainer 类。文件中主要包含了数据集构建、数据加载、模型设置、训练过程中的损失计算、训练样本的可视化等功能。

首先,程序导入了一些必要的库和模块,包括数学运算、随机数生成、深度学习相关的 PyTorch 库,以及 Ultralytics 提供的各种工具和模型模块。接着,定义了 DetectionTrainer 类,该类主要负责 YOLO 模型的训练过程。

build_dataset 方法中,程序根据传入的图像路径和模式(训练或验证)构建 YOLO 数据集。这个方法还支持不同模式下的图像增强操作。get_dataloader 方法则负责构建数据加载器,确保在分布式训练时只初始化一次数据集,并根据模式设置是否打乱数据。

preprocess_batch 方法用于对每个批次的图像进行预处理,包括缩放和转换为浮点数。这个过程还支持多尺度训练,即在每个训练周期随机选择图像的大小,以增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等。get_model 方法则用于返回一个 YOLO 检测模型的实例,并可以加载预训练权重。

在验证阶段,get_validator 方法返回一个用于模型验证的 DetectionValidator 实例。label_loss_items 方法则负责返回一个包含训练损失项的字典,以便于后续的损失记录和分析。

此外,progress_string 方法用于格式化输出训练进度的信息,包括当前的轮次、GPU 内存使用情况、损失值、实例数量和图像大小等。plot_training_samples 方法用于可视化训练样本及其标注,帮助用户直观地了解训练数据的情况。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带有标签的训练图,便于用户分析模型的训练效果。

总体而言,这个程序文件实现了 YOLO 模型训练的各个环节,提供了灵活的数据处理和可视化功能,适合于目标检测任务的研究和应用。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于 YOLO(You Only Look Once)目标检测框架的实现,主要用于目标检测和姿态估计任务。整体架构包括数据处理、模型训练、验证、预测和结果可视化等多个模块。每个模块都有其特定的功能,协同工作以实现高效的目标检测和姿态估计。

  • 数据处理:包括数据集的构建、加载和预处理,确保输入数据符合模型的要求。
  • 模型训练:提供训练过程的管理,包括损失计算、训练样本可视化、模型参数的更新等。
  • 模型验证:在训练过程中进行模型的评估,计算指标如 mAP(平均精度均值)等。
  • 预测:对新输入数据进行推理,生成检测结果。
  • 结果可视化:帮助用户直观理解模型的训练效果和预测结果。

文件功能整理表

文件路径功能描述
ui.py提供一个命令行工具,用于启动基于 Streamlit 的 Web 应用,运行指定的脚本。
predict.py定义 DetectionPredictor 类,负责基于检测模型进行预测和后处理。
code\ultralytics\utils\downloads.py提供文件下载、解压和管理的工具函数,支持从网络获取模型文件。
code\ultralytics\utils\callbacks\raytune.py集成 Ray Tune 的回调函数,用于在训练过程中报告指标,支持超参数调优。
code\ultralytics\models\yolo\pose\val.py定义 PoseValidator 类,负责姿态模型的验证过程,包括数据预处理和评估指标计算。
train.py实现 YOLO 模型的训练过程,包括数据集构建、模型设置、损失计算和训练样本可视化。
code\ultralytics\data\explorer\utils.py提供数据探索和分析的工具函数,帮助用户理解数据集的结构和内容。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\utils\ops.py包含模型操作的实用函数,支持各种 YOLOv8 算法的实现和优化。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\trackers\basetrack.py实现基础的目标跟踪算法,支持在视频流中进行目标检测和跟踪。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\convnextv2.py定义 ConvNextV2 模型的实现,作为 YOLO 的骨干网络之一。
code\ultralytics\solutions\object_counter.py实现目标计数功能,基于检测结果进行目标数量的统计。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\benchmarks.py提供性能基准测试工具,评估模型在不同条件下的表现。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\fastsam\prompt.py实现 FastSAM 模型的提示功能,支持快速的图像分割和处理。

以上表格总结了每个文件的主要功能,帮助用户快速了解项目的结构和各个模块的作用。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/object-detection-task608

参考原始博客2: https://github.com/VisionMillionDataStudio/object-detection-task608 ](https://i-blog.csdnimg.cn/direct/abc304303c634d159b257d31ad71f335.png#pic_center)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值