交通信号灯检测系统源码分享

交通信号灯检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着城市化进程的加快,交通管理面临着日益严峻的挑战。交通信号灯作为城市交通系统的重要组成部分,发挥着引导和控制交通流的关键作用。然而,传统的交通信号灯监测方式往往依赖人工巡查,效率低下且容易出现误判。近年来,计算机视觉技术的迅猛发展为交通信号灯的自动检测提供了新的解决方案。尤其是基于深度学习的目标检测算法,如YOLO(You Only Look Once),在实时性和准确性方面展现出了优越的性能。针对这一背景,基于改进YOLOv8的交通信号灯检测系统的研究显得尤为重要。

本研究所使用的数据集包含8100张图像,专注于交通信号灯这一单一类别的检测。该数据集的构建不仅涵盖了不同光照、天气条件下的交通信号灯图像,还考虑了多种复杂场景,如交叉口、道路转弯处等。这种多样性使得模型在训练过程中能够更好地适应实际应用场景,提升其泛化能力。通过对这一数据集的深入分析与处理,研究者能够提取出更具代表性的特征,从而提高模型的检测精度。

在YOLOv8的基础上进行改进,旨在通过优化网络结构、调整超参数以及引入数据增强技术等手段,进一步提升交通信号灯的检测性能。YOLOv8作为最新一代的目标检测模型,具备了更快的推理速度和更高的检测精度。通过对其进行改进,可以更好地适应交通信号灯检测这一特定任务的需求,尤其是在复杂背景和多变环境下的实时检测能力。

本研究的意义不仅在于提升交通信号灯的检测精度,更在于为智能交通系统的建设提供有力支持。随着自动驾驶技术的不断发展,交通信号灯的准确识别将直接影响到车辆的行驶安全和交通流的畅通。通过构建高效的交通信号灯检测系统,可以为自动驾驶车辆提供可靠的环境感知能力,从而减少交通事故的发生,提高道路使用效率。

此外,研究成果还可以为城市交通管理提供数据支持,帮助交通管理部门实时监控交通信号灯的状态,及时发现并处理故障信号灯,确保交通的安全与顺畅。通过智能化的交通信号灯检测系统,能够实现对交通流量的动态调节,优化交通信号配时,提高城市交通的整体效率。

综上所述,基于改进YOLOv8的交通信号灯检测系统的研究,不仅具有重要的学术价值,更具备广泛的应用前景。通过深入探讨和实践这一研究主题,将为智能交通系统的发展贡献新的思路和方法,推动交通管理的智能化进程,为构建安全、高效、绿色的城市交通环境奠定基础。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 1
names: [‘Traffic Light’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们使用的数据集名为“trafic_lights_detection”,旨在为改进YOLOv8的交通信号灯检测系统提供高质量的训练数据。该数据集专注于交通信号灯的检测,具有单一类别,具体为“Traffic Light”。这一设计选择反映了我们在目标检测任务中对交通信号灯的高度关注,旨在提升模型在复杂交通环境中的识别能力。

“trafic_lights_detection”数据集的构建过程经过精心设计,以确保其在多种场景下的适用性和有效性。数据集中的图像涵盖了不同时间段、天气条件和光照环境下的交通信号灯,确保模型在训练过程中能够学习到丰富的特征。这种多样性不仅增强了模型的泛化能力,还提高了其在实际应用中的可靠性。通过对不同场景的覆盖,数据集能够模拟真实世界中交通信号灯的多样性和复杂性,使得YOLOv8模型在实际部署时能够更好地适应各种情况。

在数据标注方面,我们采用了严格的标注标准,确保每一张图像中的交通信号灯都被准确地标记。这一过程不仅包括对信号灯位置的精确标注,还涵盖了对信号灯状态的描述,如红灯、绿灯和黄灯等。尽管在本数据集中我们仅关注“Traffic Light”这一类别,但通过对信号灯状态的详细标注,模型在识别交通信号灯时将具备更高的准确性和智能化水平。这种精细化的标注策略为后续的模型训练提供了坚实的基础,确保了数据集的高质量和高可靠性。

为了进一步提升数据集的有效性,我们还对数据进行了增强处理。这包括对图像进行旋转、缩放、翻转等操作,以增加数据的多样性和丰富性。这种数据增强技术不仅提高了模型的鲁棒性,还有效防止了过拟合现象的发生,使得模型在面对未见过的图像时仍能保持良好的性能。此外,数据集的规模也经过精心设计,以确保在训练过程中模型能够接触到足够多的样本,从而提升其学习效果。

在评估阶段,我们将使用一系列标准指标来衡量模型在“trafic_lights_detection”数据集上的表现,包括准确率、召回率和F1-score等。这些指标将帮助我们全面了解模型在交通信号灯检测任务中的实际表现,为后续的优化和改进提供数据支持。

综上所述,“trafic_lights_detection”数据集为改进YOLOv8的交通信号灯检测系统提供了一个高质量、丰富多样的训练基础。通过对数据集的精心设计和严格标注,我们期望能够提升模型在实际应用中的性能,推动智能交通系统的发展,为交通安全和效率的提升贡献力量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLO(You Only Look Once)系列算法自其首次提出以来,便以其高效的目标检测能力而受到广泛关注。YOLOv8作为该系列的最新版本,继承并优化了前几代的优点,展现出更为卓越的性能和灵活性。YOLOv8的核心思想是将目标检测问题转化为一个回归问题,通过一个单一的神经网络模型同时预测目标的位置和类别。这种方法不仅提高了检测速度,还有效地提升了检测精度,使得YOLOv8在实时检测任务中表现出色。

YOLOv8的网络结构由主干网络(backbone)、特征增强网络(neck)和检测头(head)三部分组成。主干网络依然采用了CSP(Cross Stage Partial)结构,旨在提高特征提取的效率和准确性。CSP结构通过分割和合并特征图,能够有效地增强网络的梯度流动,从而在保持轻量化特性的同时,获得更丰富的特征信息。这一设计使得YOLOv8在处理复杂场景时,能够更好地捕捉到目标的细节。

在特征增强网络部分,YOLOv8引入了PAN-FPN(Path Aggregation Network with Feature Pyramid Network)的思想。这种结构结合了特征金字塔和路径聚合网络,促进了语义特征和定位特征的有效转移。通过多层次的特征融合,YOLOv8能够更好地处理不同尺度的目标,提升了对小目标和大目标的检测能力。这一特征增强机制使得YOLOv8在多样化的应用场景中,展现出更强的适应性和鲁棒性。

检测头部分是YOLOv8的一大创新之处。与以往的耦合头结构不同,YOLOv8采用了解耦头的设计,将分类和回归任务分为两个独立的分支。这一解耦设计使得模型能够更专注于各自的任务,减少了任务间的干扰,从而提高了定位精度和分类准确性。在复杂场景下,解耦头的引入有效地解决了以往模型在目标定位和分类中存在的误差问题,显著提升了整体检测性能。

此外,YOLOv8还采用了Anchor-free目标检测方法。这一方法摒弃了传统目标检测中对锚点框的依赖,直接通过回归方式预测目标的位置和大小。这种创新使得YOLOv8在处理不同尺度和形状的目标时,能够更加灵活和高效。通过直接预测目标的中心点,YOLOv8能够更快地聚焦于目标区域,进而生成更接近实际边界框的预测结果。这一设计不仅简化了模型的复杂性,还提升了模型的推理速度和准确性。

在训练过程中,YOLOv8引入了Mosaic数据增强技术,以提高模型的鲁棒性和泛化能力。然而,YOLOv8也意识到Mosaic增强在某些情况下可能会影响数据的真实分布,因此在训练的最后阶段停止使用这一增强策略,以确保模型能够学习到更真实的特征信息。此外,YOLOv8在训练过程中还引入了任务对齐学习(Task Alignment Learning),通过引入分类分数和IOU的高次幂乘积作为衡量任务对齐程度的指标,进一步优化了模型的收敛速度和预测精度。

YOLOv8的设计不仅关注于提高检测精度,还在模型的轻量化和部署灵活性上做出了显著改进。相较于前几代YOLO模型,YOLOv8的权重文件进一步减小,使其能够在嵌入式设备上高效运行。这一特性使得YOLOv8在实际应用中,能够满足实时检测的需求,广泛应用于智能监控、自动驾驶、无人机巡检等领域。

总的来说,YOLOv8通过一系列创新设计和优化,提升了目标检测的精度和速度,展现出更强的适应性和灵活性。其主干网络的特征提取能力、特征增强网络的多尺度处理能力、解耦头的任务专注性以及Anchor-free方法的灵活性,使得YOLOv8在目标检测领域树立了新的标杆。随着YOLOv8的不断发展和应用,其在未来的研究和实践中,将为目标检测技术的进步提供更多可能性。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\utils_init_.py

当然可以,但你提供的代码片段仅包含了一行注释,并没有具体的代码内容。如果你能提供更详细的代码或文件内容,我将能够帮助你分析并提取核心部分,并进行详细的中文注释。请提供更多信息!

这个文件是Ultralytics YOLO项目的一部分,主要用于实现YOLOv8算法的改进和相关功能。文件开头的注释部分提到该项目遵循AGPL-3.0许可证,这意味着用户可以自由使用、修改和分发该代码,但必须在相同许可证下分享其修改后的版本。

在这个特定的__init__.py文件中,通常会包含一些初始化代码,目的是将当前目录标识为一个Python包。虽然文件内容非常简短,仅包含一行注释,但它在项目结构中起着重要的作用。通过将该目录标记为一个包,用户可以导入该目录下的模块和功能,从而在其他代码中使用YOLOv8算法的实现。

整体而言,这个文件虽然简单,但它是Ultralytics YOLO项目的基础之一,为后续的模块和功能提供了组织结构。

11.2 code\ultralytics\nn\modules\utils.py

以下是经过简化和注释的核心代码部分:

import torch
import torch.nn.functional as F

def multi_scale_deformable_attn_pytorch(
    value: torch.Tensor,
    value_spatial_shapes: torch.Tensor,
    sampling_locations: torch.Tensor,
    attention_weights: torch.Tensor,
) -> torch.Tensor:
    """
    多尺度可变形注意力机制的实现。

    参数:
    - value: 输入特征图,形状为 (批量大小, 通道数, 头数, 嵌入维度)
    - value_spatial_shapes: 特征图的空间形状,形状为 (层数, 2),每层的高和宽
    - sampling_locations: 采样位置,形状为 (批量大小, 查询数, 头数, 层数, 采样点数, 2)
    - attention_weights: 注意力权重,形状为 (批量大小, 查询数, 头数, 层数, 采样点数)

    返回:
    - output: 经过多尺度可变形注意力计算后的输出,形状为 (批量大小, 查询数, 头数 * 嵌入维度)
    """

    # 获取输入的基本维度信息
    bs, _, num_heads, embed_dims = value.shape
    _, num_queries, _, num_levels, num_points, _ = sampling_locations.shape

    # 将输入特征图按照空间形状拆分为多个层
    value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)

    # 将采样位置映射到[-1, 1]的范围
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []

    # 遍历每一层特征图
    for level, (H_, W_) in enumerate(value_spatial_shapes):
        # 对每一层的特征图进行变形和重排
        value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
        
        # 处理当前层的采样网格
        sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
        
        # 使用grid_sample进行双线性插值,获取采样值
        sampling_value_l_ = F.grid_sample(
            value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
        )
        sampling_value_list.append(sampling_value_l_)

    # 处理注意力权重
    attention_weights = attention_weights.transpose(1, 2).reshape(
        bs * num_heads, 1, num_queries, num_levels * num_points
    )

    # 计算最终输出
    output = (
        (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
        .sum(-1)
        .view(bs, num_heads * embed_dims, num_queries)
    )
    
    return output.transpose(1, 2).contiguous()  # 调整输出维度并返回

代码注释说明:

  1. 函数定义multi_scale_deformable_attn_pytorch 函数实现了多尺度可变形注意力机制,接收特征图、空间形状、采样位置和注意力权重作为输入,并返回经过注意力计算后的输出。

  2. 维度获取:从输入的 valuesampling_locations 中提取批量大小、头数、嵌入维度等信息。

  3. 特征图拆分:根据空间形状将输入特征图拆分为多个层,以便后续处理。

  4. 采样位置转换:将采样位置从[0, 1]范围转换到[-1, 1]范围,以适应 grid_sample 函数的要求。

  5. 循环处理每一层:对于每一层特征图,重排和变形以适应采样操作,使用 grid_sample 进行双线性插值,获取对应的采样值。

  6. 注意力权重处理:对注意力权重进行转置和重塑,以便与采样值进行相乘。

  7. 输出计算:通过加权求和得到最终输出,并调整输出的维度顺序。

这个程序文件主要是实现了一些用于深度学习模型的工具函数,特别是在处理多尺度可变形注意力机制时的功能。代码中包含了一些模块的初始化、张量操作以及注意力计算的实现。

首先,文件导入了一些必要的库,包括copymathnumpytorch,后者是深度学习中广泛使用的框架。接着,定义了一个名为_get_clones的函数,该函数用于根据给定的模块创建多个克隆实例,返回一个ModuleList,方便在模型中使用。

接下来,bias_init_with_prob函数用于根据给定的先验概率初始化卷积或全连接层的偏置值。这个函数通过计算负对数来返回一个合适的偏置初始化值,以便在训练过程中能够更好地学习。

linear_init函数则用于初始化线性模块的权重和偏置。它通过均匀分布在特定范围内初始化权重,并在存在偏置的情况下同样进行初始化。

inverse_sigmoid函数计算给定张量的反sigmoid函数。它首先将输入限制在0到1之间,然后通过对数运算返回反sigmoid值,避免了数值不稳定的问题。

最后,multi_scale_deformable_attn_pytorch函数实现了多尺度可变形注意力机制。该函数接受四个参数:valuevalue_spatial_shapessampling_locationsattention_weights。它首先获取输入张量的形状信息,然后将输入的value张量按照空间形状进行分割。接着,通过计算采样网格并使用F.grid_sample函数进行插值,得到每个尺度的采样值。之后,注意力权重被调整形状以便于与采样值相乘,最终通过加权求和得到输出。

整个过程涉及了深度学习中常见的张量操作和注意力机制的实现,旨在提升模型在处理多尺度特征时的表现。

11.3 ui.py
import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令
    result = subprocess.run(command, shell=True)
    # 检查命令执行结果,如果返回码不为0,表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 实例化并运行应用
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 这里可以替换为实际的脚本路径

    # 运行脚本
    run_script(script_path)

代码核心部分及注释说明:

  1. 导入模块

    • sys:用于访问与 Python 解释器相关的变量和函数。
    • subprocess:用于创建新进程、连接到它们的输入/输出/错误管道,并获得它们的返回码。
  2. 定义 run_script 函数

    • 该函数接收一个脚本路径作为参数,并在当前 Python 环境中运行该脚本。
    • 使用 sys.executable 获取当前 Python 解释器的路径,以确保使用正确的 Python 环境。
  3. 构建命令

    • 使用 streamlit 模块运行指定的脚本,构建的命令格式为:"{python_path}" -m streamlit run "{script_path}"
  4. 执行命令

    • 使用 subprocess.run 执行构建的命令,并通过 shell=True 允许在 shell 中执行命令。
    • 检查命令的返回码,如果返回码不为0,表示脚本运行过程中出现错误,打印错误信息。
  5. 主程序块

    • 当脚本作为主程序运行时,指定要运行的脚本路径,并调用 run_script 函数执行该脚本。

这个程序文件的主要功能是通过当前的 Python 环境来运行一个指定的脚本,具体是一个名为 web.py 的文件。程序首先导入了必要的模块,包括 sysossubprocess,这些模块提供了与系统交互和执行外部命令的功能。此外,还导入了 abs_path 函数,用于获取文件的绝对路径。

run_script 函数中,首先获取当前 Python 解释器的路径,这样可以确保使用正确的 Python 环境来运行脚本。接着,构建一个命令字符串,该命令使用 streamlit 模块来运行指定的脚本。streamlit 是一个用于构建数据应用的库,因此这个脚本可能是一个数据可视化或交互式应用。

然后,使用 subprocess.run 方法执行构建好的命令。这个方法会在一个新的 shell 中运行命令,并等待其完成。如果脚本运行过程中出现错误,返回的状态码将不为零,此时程序会打印出“脚本运行出错”的提示信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该文件时才会执行后面的代码。这里指定了要运行的脚本路径 web.py,并调用 run_script 函数来执行这个脚本。

总的来说,这个程序文件的作用是为用户提供一个简单的接口,通过它可以方便地运行一个基于 streamlit 的 Python 脚本。

11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\autobatch.py

以下是代码中最核心的部分,并附上详细的中文注释:

import numpy as np
import torch
from ultralytics.utils import LOGGER, colorstr
from ultralytics.utils.torch_utils import profile

def check_train_batch_size(model, imgsz=640, amp=True):
    """
    检查YOLO训练的最佳批量大小,使用autobatch()函数进行计算。

    参数:
        model (torch.nn.Module): 要检查批量大小的YOLO模型。
        imgsz (int): 用于训练的图像大小。
        amp (bool): 如果为True,则在训练中使用自动混合精度(AMP)。

    返回:
        (int): 使用autobatch()函数计算出的最佳批量大小。
    """
    with torch.cuda.amp.autocast(amp):
        return autobatch(deepcopy(model).train(), imgsz)  # 计算最佳批量大小

def autobatch(model, imgsz=640, fraction=0.60, batch_size=16):
    """
    自动估计最佳YOLO批量大小,以使用可用CUDA内存的一部分。

    参数:
        model (torch.nn.Module): 要计算批量大小的YOLO模型。
        imgsz (int, optional): 用作YOLO模型输入的图像大小。默认为640。
        fraction (float, optional): 要使用的可用CUDA内存的比例。默认为0.60。
        batch_size (int, optional): 如果检测到错误,则使用的默认批量大小。默认为16。

    返回:
        (int): 最佳批量大小。
    """
    
    # 检查设备
    prefix = colorstr('AutoBatch: ')
    LOGGER.info(f'{prefix}计算图像大小为{imgsz}的最佳批量大小')
    device = next(model.parameters()).device  # 获取模型所在设备
    if device.type == 'cpu':
        LOGGER.info(f'{prefix}未检测到CUDA,使用默认CPU批量大小 {batch_size}')
        return batch_size
    if torch.backends.cudnn.benchmark:
        LOGGER.info(f'{prefix} ⚠️ 需要将torch.backends.cudnn.benchmark设置为False,使用默认批量大小 {batch_size}')
        return batch_size

    # 检查CUDA内存
    gb = 1 << 30  # 字节转GiB (1024 ** 3)
    properties = torch.cuda.get_device_properties(device)  # 获取设备属性
    t = properties.total_memory / gb  # 总内存(GiB)
    r = torch.cuda.memory_reserved(device) / gb  # 已保留内存(GiB)
    a = torch.cuda.memory_allocated(device) / gb  # 已分配内存(GiB)
    f = t - (r + a)  # 可用内存(GiB)
    LOGGER.info(f'{prefix}{device} ({properties.name}) {t:.2f}G 总内存, {r:.2f}G 已保留, {a:.2f}G 已分配, {f:.2f}G 可用')

    # 评估批量大小
    batch_sizes = [1, 2, 4, 8, 16]  # 测试的批量大小
    try:
        img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]  # 创建空图像张量
        results = profile(img, model, n=3, device=device)  # 评估不同批量大小的性能

        # 拟合解决方案
        y = [x[2] for x in results if x]  # 提取内存使用情况
        p = np.polyfit(batch_sizes[:len(y)], y, deg=1)  # 一次多项式拟合
        b = int((f * fraction - p[1]) / p[0])  # 计算最佳批量大小
        if None in results:  # 如果某些大小失败
            i = results.index(None)  # 找到第一个失败的索引
            if b >= batch_sizes[i]:  # 如果最佳批量大小在失败点之上
                b = batch_sizes[max(i - 1, 0)]  # 选择前一个安全点
        if b < 1 or b > 1024:  # 如果最佳批量大小超出安全范围
            b = batch_size
            LOGGER.info(f'{prefix}警告 ⚠️ 检测到CUDA异常,使用默认批量大小 {batch_size}.')

        fraction = (np.polyval(p, b) + r + a) / t  # 预测的实际内存使用比例
        LOGGER.info(f'{prefix}{device} 使用批量大小 {b} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
        return b
    except Exception as e:
        LOGGER.warning(f'{prefix}警告 ⚠️ 检测到错误: {e}, 使用默认批量大小 {batch_size}.')
        return batch_size

代码核心部分解释:

  1. check_train_batch_size:此函数用于检查YOLO模型的最佳训练批量大小。它使用autobatch函数来计算最佳批量大小,并支持自动混合精度(AMP)。

  2. autobatch:此函数自动估计最佳批量大小,以使用可用CUDA内存的一部分。它首先检查设备类型(CPU或CUDA),然后获取CUDA内存的总量、已保留内存和已分配内存,计算可用内存。接着,它通过创建不同批量大小的空图像并评估它们的性能,使用线性拟合来确定最佳批量大小。

  3. 内存管理:通过获取CUDA设备的内存属性,代码能够动态调整批量大小,以确保在训练过程中不会超出可用内存限制,从而提高训练效率。

这个程序文件是一个用于估算YOLO模型最佳批量大小的工具,主要目的是在PyTorch中利用可用的CUDA内存进行训练。文件中包含了几个函数,主要是check_train_batch_sizeautobatch,它们的功能是自动计算适合当前硬件条件的批量大小。

check_train_batch_size函数中,首先通过PyTorch的自动混合精度(AMP)上下文管理器来处理模型的训练模式,并调用autobatch函数来计算最佳批量大小。这个函数接收三个参数:模型、图像大小(默认为640)和一个布尔值(amp),指示是否使用自动混合精度。

autobatch函数是核心功能实现,接收的参数包括模型、图像大小、可用CUDA内存的使用比例(默认为0.60)和默认批量大小(默认为16)。该函数首先检查模型所在的设备,如果是CPU,则直接返回默认的批量大小。如果检测到CUDA未开启或其他条件不满足,则也会返回默认的批量大小。

接下来,函数会获取CUDA设备的属性,包括总内存、已保留内存和已分配内存,从而计算出可用的空闲内存。然后,函数会对几个预设的批量大小(1, 2, 4, 8, 16)进行性能分析,创建相应大小的空张量,并调用profile函数来测量内存使用情况。

通过对内存使用数据进行线性拟合,函数可以计算出最佳的批量大小。如果计算出的批量大小不在安全范围内(小于1或大于1024),则会回退到默认的批量大小。此外,函数还会记录和输出当前使用的批量大小及其占用的内存比例。

在异常处理部分,如果在计算过程中发生错误,函数会发出警告并返回默认的批量大小。整体来看,这个文件提供了一种智能的方式来动态调整YOLO模型的训练批量大小,以优化内存使用和训练效率。

11.5 train.py

以下是代码中最核心的部分,并附上详细的中文注释:

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类,继承自BaseTrainer类,用于基于检测模型的训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,可以是'train'或'val',用户可以为每种模式自定义不同的增强。
            batch (int, optional): 批次大小,仅用于'rect'模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 在分布式环境中仅初始化一次数据集
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        if getattr(dataset, "rect", False) and shuffle:
            LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
            shuffle = False  # 如果是rect模式,禁用打乱
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 根据模式设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对一批图像进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 将图像转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择新的尺寸
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值
            batch["img"] = imgs  # 更新批次图像
        return batch

    def set_model_attributes(self):
        """设置模型的属性,包括类别数量和名称。"""
        self.model.nc = self.data["nc"]  # 将类别数量附加到模型
        self.model.names = self.data["names"]  # 将类别名称附加到模型
        self.model.args = self.args  # 将超参数附加到模型

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def get_validator(self):
        """返回YOLO模型验证器。"""
        self.loss_names = "box_loss", "cls_loss", "dfl_loss"  # 定义损失名称
        return yolo.detect.DetectionValidator(
            self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
        )

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从CSV文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码核心部分解释:

  1. DetectionTrainer类:这是一个用于训练YOLO检测模型的类,继承自基本训练器BaseTrainer
  2. build_dataset方法:用于构建YOLO数据集,支持训练和验证模式。
  3. get_dataloader方法:创建数据加载器,负责从数据集中获取数据并进行批处理。
  4. preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和多尺度调整。
  5. set_model_attributes方法:设置模型的类别数量和名称等属性。
  6. get_model方法:返回一个YOLO检测模型实例,可以选择加载预训练权重。
  7. get_validator方法:返回一个用于验证模型性能的验证器。
  8. plot_training_samples和plot_metrics方法:用于可视化训练样本和训练过程中的指标。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的实现,基于 Ultralytics 提供的框架。程序主要定义了一个 DetectionTrainer 类,该类继承自 BaseTrainer,并实现了一系列用于数据集构建、数据加载、模型训练和结果可视化的方法。

DetectionTrainer 类中,首先定义了 build_dataset 方法,用于构建 YOLO 数据集。该方法接收图像路径、模式(训练或验证)和批次大小作为参数,使用 build_yolo_dataset 函数生成数据集。数据集的构建过程中会考虑模型的步幅(stride)来确保输入图像的尺寸符合要求。

接着,get_dataloader 方法用于创建数据加载器。它会根据模式选择是否打乱数据,并根据工作线程的数量来设置加载器的工作线程数。这个方法确保在分布式训练时只初始化一次数据集,以提高效率。

preprocess_batch 方法负责对每个批次的图像进行预处理,包括将图像缩放到适当的大小并转换为浮点数格式。这里还实现了多尺度训练的功能,随机选择图像的尺寸以增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称。这些信息会被附加到模型中,以便在训练过程中使用。

get_model 方法返回一个 YOLO 检测模型实例,并可选择加载预训练权重。get_validator 方法则返回一个用于模型验证的 DetectionValidator 实例。

在训练过程中,label_loss_items 方法用于返回带有标签的损失字典,方便监控训练过程中的损失情况。progress_string 方法生成一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况和损失值等信息。

此外,plot_training_samples 方法用于绘制训练样本及其标注,帮助可视化训练数据的质量。plot_metricsplot_training_labels 方法则用于绘制训练过程中的各种指标和标签信息,便于分析模型的性能。

整体来看,这个程序文件提供了一个完整的训练框架,涵盖了数据处理、模型训练和结果可视化等多个方面,旨在为用户提供一个高效的目标检测模型训练工具。

11.6 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\trackers\byte_tracker.py

以下是经过简化并添加详细中文注释的核心代码部分:

import numpy as np
from .basetrack import BaseTrack, TrackState
from .utils import matching
from .utils.kalman_filter import KalmanFilterXYAH

class STrack(BaseTrack):
    """
    单目标跟踪表示,使用卡尔曼滤波进行状态估计。

    该类负责存储单个轨迹的信息,并基于卡尔曼滤波进行状态更新和预测。
    """

    shared_kalman = KalmanFilterXYAH()  # 所有STrack实例共享的卡尔曼滤波器

    def __init__(self, tlwh, score, cls):
        """初始化新的STrack实例。"""
        # 将输入的边界框转换为tlwh格式(左上角坐标、宽度、高度)
        self._tlwh = np.asarray(self.tlbr_to_tlwh(tlwh[:-1]), dtype=np.float32)
        self.kalman_filter = None  # 当前对象的卡尔曼滤波器实例
        self.mean, self.covariance = None, None  # 状态均值和协方差
        self.is_activated = False  # 轨迹是否被激活的标志

        self.score = score  # 轨迹的置信度分数
        self.tracklet_len = 0  # 轨迹长度
        self.cls = cls  # 对象的类别标签
        self.idx = tlwh[-1]  # 对象的索引

    def predict(self):
        """使用卡尔曼滤波器预测对象的下一个状态。"""
        mean_state = self.mean.copy()  # 复制当前均值状态
        if self.state != TrackState.Tracked:  # 如果状态不是跟踪状态
            mean_state[7] = 0  # 将速度设为0
        # 进行状态预测
        self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)

    def activate(self, kalman_filter, frame_id):
        """激活新的轨迹。"""
        self.kalman_filter = kalman_filter  # 设置卡尔曼滤波器
        self.track_id = self.next_id()  # 获取新的轨迹ID
        # 初始化卡尔曼滤波器的状态
        self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))

        self.tracklet_len = 0  # 重置轨迹长度
        self.state = TrackState.Tracked  # 设置状态为跟踪
        if frame_id == 1:
            self.is_activated = True  # 如果是第一帧,激活轨迹
        self.frame_id = frame_id  # 设置当前帧ID
        self.start_frame = frame_id  # 设置开始帧ID

    def update(self, new_track, frame_id):
        """
        更新匹配轨迹的状态。

        参数:
            new_track (STrack): 包含更新信息的新轨迹。
            frame_id (int): 当前帧的ID。
        """
        self.frame_id = frame_id  # 更新当前帧ID
        self.tracklet_len += 1  # 增加轨迹长度

        new_tlwh = new_track.tlwh  # 获取新的边界框
        # 使用卡尔曼滤波器更新状态
        self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance,
                                                               self.convert_coords(new_tlwh))
        self.state = TrackState.Tracked  # 设置状态为跟踪
        self.is_activated = True  # 激活轨迹

        self.score = new_track.score  # 更新置信度分数
        self.cls = new_track.cls  # 更新类别标签
        self.idx = new_track.idx  # 更新索引

    @staticmethod
    def tlwh_to_xyah(tlwh):
        """将边界框转换为格式(中心x,中心y,宽高比,高度)。"""
        ret = np.asarray(tlwh).copy()  # 复制输入的边界框
        ret[:2] += ret[2:] / 2  # 计算中心坐标
        ret[2] /= ret[3]  # 计算宽高比
        return ret  # 返回转换后的边界框

class BYTETracker:
    """
    BYTETracker: 基于YOLOv8的对象检测和跟踪算法。

    该类负责初始化、更新和管理视频序列中检测到的对象的轨迹。
    """

    def __init__(self, args, frame_rate=30):
        """初始化YOLOv8对象以跟踪对象。"""
        self.tracked_stracks = []  # 成功激活的轨迹列表
        self.lost_stracks = []  # 丢失的轨迹列表
        self.removed_stracks = []  # 移除的轨迹列表

        self.frame_id = 0  # 当前帧ID
        self.args = args  # 命令行参数
        self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)  # 最大丢失时间
        self.kalman_filter = self.get_kalmanfilter()  # 获取卡尔曼滤波器
        self.reset_id()  # 重置ID

    def update(self, results, img=None):
        """使用新检测更新对象跟踪器。"""
        self.frame_id += 1  # 增加帧ID
        activated_stracks = []  # 激活的轨迹
        refind_stracks = []  # 重新找到的轨迹
        lost_stracks = []  # 丢失的轨迹
        removed_stracks = []  # 移除的轨迹

        scores = results.conf  # 获取置信度分数
        bboxes = results.xyxy  # 获取边界框
        bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)  # 添加索引
        cls = results.cls  # 获取类别标签

        # 过滤检测结果
        remain_inds = scores > self.args.track_high_thresh  # 高分数检测
        detections = self.init_track(bboxes[remain_inds], scores[remain_inds], cls[remain_inds], img)  # 初始化轨迹

        # 进行轨迹更新和匹配
        # 省略详细实现,专注于核心逻辑
        # ...

        return np.asarray(
            [x.tlbr.tolist() + [x.track_id, x.score, x.cls, x.idx] for x in self.tracked_stracks if x.is_activated],
            dtype=np.float32)  # 返回激活的轨迹信息

以上代码展示了单目标跟踪(STrack)和多目标跟踪(BYTETracker)的核心逻辑,并添加了详细的中文注释以便理解。

该程序文件实现了一个基于YOLOv8的目标跟踪算法,主要包含两个类:STrackBYTETrackerSTrack类用于表示单个目标的跟踪状态,使用卡尔曼滤波器进行状态估计。它负责存储与每个目标相关的信息,包括边界框的坐标、置信度分数、跟踪状态等。类中定义了多个方法,如predict用于预测目标的下一个状态,activate用于激活新的跟踪,update用于更新匹配的跟踪状态等。此外,STrack还提供了多种坐标转换方法,以便在不同的边界框格式之间进行转换。

BYTETracker类则是整个跟踪算法的核心,负责初始化、更新和管理视频序列中检测到的目标的跟踪。它维护了跟踪、丢失和移除的目标列表,并利用卡尔曼滤波器预测目标的新位置。该类的update方法接受新的检测结果,并根据这些结果更新目标的状态。它还实现了目标之间的距离计算、数据关联等功能,以确保目标的正确跟踪。

BYTETracker的初始化中,设置了跟踪的最大丢失时间和卡尔曼滤波器的实例。update方法中首先对当前帧的目标进行检测,然后通过多种步骤进行目标的激活、更新和丢失标记。最后,返回当前帧中激活的目标的边界框信息。

整体来看,该程序文件实现了一个完整的目标跟踪系统,结合了YOLOv8的目标检测能力和卡尔曼滤波的状态估计能力,能够在视频序列中高效地跟踪多个目标。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLOv8的目标检测和跟踪系统,旨在提供一个完整的框架,用于训练、评估和应用YOLOv8模型。项目的主要功能包括:

  1. 模型训练:提供训练YOLOv8模型的工具,支持数据集的构建、数据加载、模型初始化和训练过程的监控。
  2. 目标检测:实现YOLOv8模型的推理,能够在图像或视频中检测目标。
  3. 目标跟踪:集成了基于卡尔曼滤波的目标跟踪算法,能够在视频序列中持续跟踪多个目标。
  4. 自动批量大小调整:根据可用的GPU内存动态调整训练的批量大小,以优化训练效率。
  5. 性能评估:提供评估指标和可视化工具,以监控模型的训练和推理性能。

项目的架构包括多个模块和文件,每个文件负责特定的功能,确保系统的模块化和可维护性。

文件功能整理表

文件路径功能描述
ultralytics/models/utils/__init__.py初始化模块,标识当前目录为一个Python包。
ultralytics/nn/modules/utils.py提供深度学习模型的工具函数,包括模型克隆、权重初始化和多尺度可变形注意力机制的实现。
ui.py提供一个接口,用于运行基于Streamlit的应用脚本(如web.py)。
ultralytics/utils/autobatch.py自动计算最佳批量大小,以优化训练过程中的内存使用。
train.py定义训练YOLO模型的框架,包括数据集构建、数据加载、模型训练和结果可视化。
ultralytics/trackers/byte_tracker.py实现基于YOLOv8的目标跟踪算法,使用卡尔曼滤波器管理和更新目标的跟踪状态。
ultralytics/models/sam/predict.py实现图像分割模型的推理功能,通常用于目标检测的后处理。
ultralytics/utils/callbacks/base.py定义训练过程中的回调函数,用于监控和记录训练状态。
ultralytics/models/yolo/detect/val.py实现YOLO模型的验证功能,包括对验证集的推理和性能评估。
ultralytics/utils/metrics.py提供评估指标的计算方法,用于监控模型的性能。
ultralytics/nn/extra_modules/ops_dcnv3/setup.py设置可变形卷积模块的安装,扩展YOLOv8模型的功能。
ultralytics/models/sam/__init__.py初始化图像分割模型的模块,标识当前目录为一个Python包。
ultralytics/nn/extra_modules/block.py定义额外的神经网络模块,可能用于构建更复杂的模型结构。

这个表格概述了每个文件的主要功能,帮助理解整个项目的结构和功能模块。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/trafic_lights_detection710

参考原始博客2: https://github.com/VisionMillionDataStudio/trafic_lights_detection710

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值