具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。
再接下来M行,每行两个正整数L,R表示一个询问。
1 2 3 3 3 2
2 6
1 3
3 5
1 6
0/1
1/1
4/15
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
莫队算法
设a[i]为i位置的颜色
我们用stu[i]来记录当前区间[l,r]中i颜色出现了多少次,显然可以配成一对袜子的组合数是ans=sigma(stu[i]*(stu[i]-1))
那么从[l,r]到[l,r+1],我们需要做的操作就是ans-stu[a[r+1]]*(stu[a[r+1]]-1),stu[a[r+1]]+1,ans+stu[a[r+1]]*(stu[a[r+1]]-1),时间复杂度为O(1)
这样可以发现,从[l,r]调整到[l',r']需要的时间为|l-l'|+|r-r'|
把询问看成点,既是两点间的汉密顿距离
如果能够按某种顺序调整询问,那么复杂度肯定比暴力快……
容易想到求一条最短汉密顿路径,但这个是npc
所以用一个代替算法来解决,曼哈顿最小生成树
可以证明按着生成树来回答询问复杂度为O(Msqrt(N))
这对于不修改的区间问题是种不错的解法……
曼哈顿最小生成树代码量略大,可以用分块代替
将序列分成sqrt(N)块,设x位置属于from(x)块
将询问按(from(l),r)双关键字排序
然后对于所有from(l)相同的按顺序回答
这样由于r是递增的,对于每一块最多将整个序列扫一遍,复杂度O(N^1.5)
而l只会在所属块中移动,复杂度O(Msqrt(N))
所以总复杂度为O((N+M)sqrt(N))
复杂度基本没区别,但是好写了很多
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
long long now,ans[50001];
int n,m,i,j,k,tot,len;
int stu[50001],dl[50001],a[50001],x[50001],y[50001];
long long gcd (long long a,long long b)
{
long long i;
while (a%b!=0)
{
i=a%b;
a=b;
b=i;
}
return b;
}
int from (int x)
{
return (x-1)/len+1;
}
bool cmp (int a,int b)
{
if (from(x[a])<from(x[b])) return true;
if (from(x[a])>from(x[b])) return false;
if (y[a]<y[b]) return true;
return false;
}
int main ()
{
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++) scanf("%d",&a[i]);
for (i=1;i<=m;i++) scanf("%d%d",&x[i],&y[i]);
for (i=1;i<=m;i++) dl[i]=i;
len=220;
sort(dl+1,dl+m+1,cmp);
i=1;
while (i<=m)
{
k=from(x[dl[i]]);
now=0;
memset(stu,0,sizeof(stu));
for (j=x[dl[i]];j<=y[dl[i]];j++)
{
now-=(long long)stu[a[j]]*(stu[a[j]]-1);
stu[a[j]]++;
now+=(long long)stu[a[j]]*(stu[a[j]]-1);
}
ans[dl[i++]]=now;
while ((i<=n)&(from(x[dl[i]])==k))
{
for (j=y[dl[i-1]]+1;j<=y[dl[i]];j++)
{
now-=(long long)stu[a[j]]*(stu[a[j]]-1);
stu[a[j]]++;
now+=(long long)stu[a[j]]*(stu[a[j]]-1);
}
if (x[dl[i]]>x[dl[i-1]])
for (j=x[dl[i-1]];j<x[dl[i]];j++)
{
now-=(long long)stu[a[j]]*(stu[a[j]]-1);
stu[a[j]]--;
now+=(long long)stu[a[j]]*(stu[a[j]]-1);
}
else
for (j=x[dl[i-1]]-1;j>=x[dl[i]];j--)
{
now-=(long long)stu[a[j]]*(stu[a[j]]-1);
stu[a[j]]++;
now+=(long long)stu[a[j]]*(stu[a[j]]-1);
}
ans[dl[i++]]=now;
}
}
for (i=1;i<=m;i++)
if (ans[i]==0) printf("0/1\n");
else
{
k=y[i]-x[i]+1;
now=gcd(ans[i],(long long)k*(k-1));
printf("%lld/%lld\n",ans[i]/now,(long long)k*(k-1)/now);
}
return 0;
}