NLP自然语言处理

第0部分Pytorch4
      1.1认识Pytorch-第1步-什么是Pytorch.mp4
      1.1认识Pytorch-第2步-基本元素操作-part1.mp4
      1.1认识Pytorch-第2步-基本元素操作-part2.mp4
      1.1认识Pytorch-第3步-基本运算操作-part2.mp4
      1.1认识Pytorch-第4步-类型转换-part1.mp4
      1.1认识Pytorch-第4步-类型转换-part2.mp4
      1.1认识Pytorch-第4步-类型转换-part3.mp4
      1.1认识Pytorch-第5步-小节总结.mp4
      1.2Pytorch中的autograd-第1步-关于Tensor的概念.mp4
      1.2Pytorch中的autograd-第2步-关于Tensor的操作.mp4
      1.2Pytorch中的autograd-第3步-关于梯度的概念和小节总结.mp4
      2.1Pytorch构建神经网络-第1步-构建神经网络-part1.mp4
      2.1Pytorch构建神经网络-第1步-构建神经网络-part2.mp4
      2.1Pytorch构建神经网络-第1步-构建神经网络-part3.mp4
      2.1Pytorch构建神经网络-第1步-构建神经网络-part4.mp4
      2.1Pytorch构建神经网络-第2步-损失函数.mp4
      2.1Pytorch构建神经网络-第3步-反向传播.mp4
      2.1Pytorch构建神经网络-第4步-更新网络参数.mp4
      2.1Pytorch构建神经网络-第5步-小节总结.mp4
      2.2Pytorch构建分类器-第0步-数据集介绍.mp4
      2.2Pytorch构建分类器-第1步-下载数据集-part1.mp4
      2.2Pytorch构建分类器-第1步-下载数据集-part2.mp4
      2.2Pytorch构建分类器-第1步-下载数据集-part3.mp4
      2.2Pytorch构建分类器-第2步-定义卷积神经网络-part1.mp4
      2.2Pytorch构建分类器-第3步-定义损失函数-part1.mp4
      2.2Pytorch构建分类器-第4步-训练模型-part1.mp4
      2.2Pytorch构建分类器-第4步-训练模型-part2.mp4
      2.2Pytorch构建分类器-第5步-测试模型-part1.mp4
      2.2Pytorch构建分类器-第5步-测试模型-part2.mp4
      2.2Pytorch构建分类器-第5步-测试模型-part3.mp4
      2.2Pytorch构建分类器-第5步-测试模型-part4.mp4
      2.2Pytorch构建分类器-第6步-GPU训练模型和小节总结.mp4

第1部分自然语言处理入门
      1.1自然语言处理入门.mp4
      ^
第2部分HMM和CRF
      1.1CRF模型简介.mp4
      1.1HMM模型介绍.mp4
      1.2文本处理的基本方法-part1.mp4
      2.1新闻主题分类任务-第4步-part2.mp4

第43部分RNN
      1.1RNN模型小结.mp4
      1.1RNN模型简介-part1.mp4
      1.1RNN模型简介-part2.mp4
      1.2传统RNN模型优缺点及小结.mp4
      1.2传统RNN模型构造和代码演示part1.mp4
      1.2传统RNN模型构造和代码演示part2.mp4
      1.3LSTM模型介绍-part1.mp4
      1.3LSTM模型介绍-part2.mp4
      1.3LSTM模型介绍-part3.mp4
      1.3LSTM模型介绍-part4.mp4
      1.3LSTM模型小结.mp4
      1.4GRU_1模型介绍.mp4
      1.4GRU_2模型代码演示.mp4
      1.4GRU_3模型小结.mp4
      1.5注意力机制代码分析.mp4
      1.5注意力机制代码实现.mp4
      1.5注意力机制小结.mp4
      1.5注意力概念和计算规则介绍.mp4
      2.1人名分类器第1步.mp4
      2.1人名分类器第2步-part1.mp4
      2.1人名分类器第2步-part2.mp4
      2.1人名分类器第3步-part1.mp4
      2.1人名分类器第3步-part2.mp4
      2.1人名分类器第3步-part3.mp4
      2.1人名分类器第3步-part4.mp4
      2.1人名分类器第3步-part5.mp4
      2.1人名分类器第4步-构建训练函数-part1.mp4
      2.1人名分类器第4步-构建训练函数-part2.mp4
      2.1人名分类器第4步-构建训练函数-part3.mp4
      2.1人名分类器第4步-构建训练函数-part4.mp4
      2.1人名分类器第4步-构建训练函数-part5.mp4
      2.1人名分类器第4步-构建训练函数-part6.mp4
      2.1人名分类器第4步-构建训练函数-part7.mp4
      2.1人名分类器第4步-构建训练函数-part8.mp4
      2.1人名分类器第4步-构建训练函数-part9.mp4
      2.1人名分类器第5步-构建评估函数-part1_RNN.mp4
      2.1人名分类器第5步-构建评估函数-part2_LSTM.mp4
      2.1人名分类器第5步-构建评估函数-part3_GRU.mp4
      2.1人名分类器第5步-构建预测函数-part4.mp4
      2.1人名分类器第5步-构建预测函数-part5.mp4
      2.1人名分类器第6步案例小结.mp4
      2.2英译法任务_第0步-总体介绍.mp4
      2.2英译法任务_第1步-导入包.mp4
      2.2英译法任务_第2步-part1.mp4
      2.2英译法任务_第2步-part2.mp4
      2.2英译法任务_第2步-part3.mp4
      2.2英译法任务_第2步-part4.mp4
      2.2英译法任务_第2步-part5.mp4
      2.2英译法任务_第2步-part6.mp4
      2.2英译法任务_第2步-part7.mp4
      2.2英译法任务_第3步-part1.mp4
      2.2英译法任务_第3步-part2.mp4
      2.2英译法任务_第3步-part3.mp4
      2.2英译法任务_第3步-part4.mp4
      2.2英译法任务_第3步-part5.mp4
      2.2英译法任务_第3步-part6.mp4
      2.2英译法任务_第4步-part1.mp4
      2.2英译法任务_第4步-part2.mp4
      2.2英译法任务_第4步-part3.mp4
      2.2英译法任务_第4步-part4.mp4
      2.2英译法任务_第4步-part5.mp4
      2.2英译法任务_第4步-part6.mp4
      2.2英译法任务_第5步-part1.mp4
      2.2英译法任务_第5步-part2.mp4
      2.2英译法任务_第5步-part3.mp4
      2.2英译法任务_第5步-part4.mp4
      2.2英译法任务_第5步-part5.mp4

第4部分Transformer
      1.1Transformer背景介绍.mp4
      2.1认识Transformer架构-part1.mp4
      2.1认识Transformer架构-part2.mp4
      2.2输入部分实现-part1.mp4
      2.2输入部分实现-part2.mp4
      2.2输入部分实现-part3.mp4
      2.2输入部分实现-part4.mp4
      2.2输入部分实现-part5.mp4
      2.2输入部分实现-part6.mp4
      2.3.1掩码张量-part1.mp4
      2.3.1掩码张量-part2.mp4
      2.3.1掩码张量-part3.mp4
      2.3.2注意力机制-part1.mp4
      2.3.2注意力机制-part2.mp4
      2.3.2注意力机制-part3.mp4
      2.3.2注意力机制-part4.mp4
      2.3.3多头注意力机制-part1.mp4
      2.3.3多头注意力机制-part2.mp4
      2.3.3多头注意力机制-part3.mp4
      2.3.3多头注意力机制-part4.mp4
      2.3.4前馈全连接层-part1.mp4
      2.3.4前馈全连接层-part2.mp4
      2.3.5规范化层-part1.mp4
      2.3.5规范化层-part2.mp4
      2.3.6子层连接结构-part1.mp4
      2.3.6子层连接结构-part2.mp4
      2.3.7编码器层-part1.mp4
      2.3.7编码器层-part2.mp4
      2.3.8编码器-part1.mp4
      2.3.8编码器-part2.mp4
      2.4.1解码器层-part1.mp4
      2.4.1解码器层-part2.mp4
      2.4.2解码器-part1.mp4
      2.4.2解码器-part2.mp4
      2.5输出部分实现-part1.mp4
      2.5输出部分实现-part2.mp4
      2.6模型构建-part1.mp4
      2.6模型构建-part2.mp4
      2.6模型构建-part3.mp4
      2.6模型构建-part4.mp4
      2.7模型基本测试运行-小节总结.mp4
      2.7模型基本测试运行-第一步-part1.mp4
      2.7模型基本测试运行-第一步-part2.mp4
      2.7模型基本测试运行-第三步.mp4
      2.7模型基本测试运行-第二步-part1.mp4
      2.7模型基本测试运行-第二步-part2.mp4
      2.7模型基本测试运行-第四步.mp4
      3.1使用Transformer构建语言模型-0总体介绍.mp4
      3.1使用Transformer构建语言模型-第1步.mp4
      3.1使用Transformer构建语言模型-第2步-part1.mp4
      3.1使用Transformer构建语言模型-第2步-part2.mp4
      3.1使用Transformer构建语言模型-第3步-part1.mp4
      3.1使用Transformer构建语言模型-第3步-part2.mp4
      3.1使用Transformer构建语言模型-第4步-part1.mp4
      3.1使用Transformer构建语言模型-第4步-part2.mp4
      3.1使用Transformer构建语言模型-第4步-part3.mp4
      3.1使用Transformer构建语言模型-第5步-part1.mp4
      3.1使用Transformer构建语言模型-第5步-part2.mp4

NLP基础课所有数据和代码

已标记关键词 清除标记
<p> 本课程<span>隶属于自然语言处理</span>(NLP)<span>实战系列。自然语言处理</span>(NLP)<span>是数据科学里的一个分支,它的主要覆盖的内容是:以一种智能与高效的方式,对文本数据进行系统化分析、理解与信息提取的过程。通过使用</span>NLP以及它的组件,我们可以管理非常大块的文本数据,或者执行大量的自动化任务,并且解决各式各样的问题,如自动摘要,机器翻译,命名实体识别,关系提取,情感分析,语音识别,以及主题分割等等。 </p> <p> <span>一般情况下一个初级</span>NLP工程师的工资从15<span>万</span>-35<span>万不等,所以掌握</span>NLP技术,对于人工智能学习者来讲是非常关键的一个环节。 </p> <p> <br /> </p> <p> <br /> </p> <p> <span style="background-color:#FFE500;">【超实用课程内容】</span> </p> <p> <span>课程从自然语言处理的基本概念与基本任务出发,对目前主流的自然语言处理应用进行全面细致的讲解,</span><span>包括文本分类,文本摘要提取,文本相似度,文本情感分析,文本特征提取等,同时算法方面包括经典算法与深度学习算法的结合,例如</span><span>LSTM,BiLSTM等,并结合京东电商评论分类、豆瓣电影摘要提取、今日头条舆情挖掘、饿了么情感分析等过个案例,帮助大家熟悉自然语言处理工程师在工作中会接触到的</span><span>常见应用的实施的基本实施流程,从</span><span>0-1入门变成自然语言处理研发工程师。</span> </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> <span style="background-color:#FFE500;">【课程如何观看?】</span> </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> PC端:<a href="https://edu.csdn.net/course/detail/26277"></a><a href="https://edu.csdn.net/course/detail/25649">https://edu.csdn.net/course/detail/25649</a> </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> 移动端:CSDN 学院APP(注意不是CSDN APP哦) </p> <p style="color:#3A4151;font-size:14px;background-color:#FFFFFF;"> 本课程为录播课,课程2年有效观看时长,大家可以抓紧时间学习后一起讨论哦~ </p> <p> <br /> </p> <p> <strong><span style="background-color:#FFE500;">【学员专</span><span style="background-color:#FFE500;">享增值服务】</span></strong> </p> <p> 源码开放 </p> <p> 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 </p> <p> 下载方式:电脑登录<a href="https://edu.csdn.net/course/detail/26277"></a><a href="https://edu.csdn.net/course/detail/25649">https://edu.csdn.net/course/detail/25649</a>,点击右下方课程资料、代码、课件等打包下载 </p> <p> <br /> </p> <p> 通过第二课时下载材料<span></span> </p> <p> <br /> </p> <p> <br /> </p>
相关推荐
<p> 课程目标: </p> <p> 学习完本门课程,您将对自然语言处理技术有更深入的了解,彻底掌握中文命名实体识别技术。 </p> <p> 适用人群: </p> <p> 自然语言处理从业者、深度学习爱好者 </p> <p> 课程简介: </p> <p> <span style="color:#000000;">命名实体识别作为自然语言处理的基础技术之一,在自然语言处理上游各个任务(问答系统、机器翻译、对话系统等)重扮演者十分重要的角色,因此深入掌握命名实体识别技术,是作为自然语言处理从业者毕本技能,本课程理论与实践相结合,希望能给大家带来帮助。</span> </p> <p> <span style="color:#000000;">课程要求:</span> </p> <p> <span style="color:#666666;"><span style="color:#000000;">(1)开发环境:Python3.6.5 Tensorflow1.13.1;</span><br /><span style="color:#000000;">(2)开发工具:Pycharm;</span></span> </p> <p> <span style="color:#000000;">(3)学员基础:需要一定的Python基础,及深度学习基础;</span> </p> <p> <span style="color:#000000;">(4)学院收货:掌握命名实体识别关键技术;</span> </p> <p> <span style="color:#000000;">(5)学院资料:见课程资料;</span> </p> <p> <span style="color:#000000;">(6)课程亮点:全程实战操作,徒手撸代码。</span> </p> <p> <span style="color:#666666;"><img src="https://img-bss.csdn.net/201909110702377915.png" alt="" /><br /></span> </p> <p> <span style="color:#666666;"><img src="https://img-bss.csdn.net/201910071129463693.png" alt="" /><br /></span> </p>
<p> <br /></p> <p> <strong>课程目标</strong> </p> <p> (1)采用PyTorch深度学习工具进行实战操作,掌握PyTorch基本使用; </p> <p> (2)掌握工业界短文本处理解决方案,如:对话系统,智能客服,新闻领域分类等; </p> <p> (3)词向量项目案例应用,掌握文本的表示方法; </p> <p> (4)通过项目案例实战,掌握TextCNN短文本分类在工业界应用,可以直接应用在如下领域 </p> <p> 例如:对话系统意图识别,智能客服问答意图识别,资讯短文本分类等文本分类场景。 </p> <p> <strong>适用人群</strong> </p> <p> (1)想要从事NLP的在校学生、NLP研发工程师 </p> <p> (2)自然语言处理从业者、深度学习爱好者 </p> <p> <strong>课程简介</strong> </p> <p> 短文本分类作为自然语言处理的基础技术之一NLP领域的热门应用,常用在对话语言平台,文章分类,智能客服,FAQ智能问答等多个场景。 因此深入掌握短文本分类技术,是作为自然语言处理从业者必备技能,本课程以案例驱动出发,结合多个工业级解决方案,了解当下文本分类实际工业界的应用。 </p> <p> <strong>课程要求:</strong> </p> <p> (1)开发环境:python版本:Python3.x;PyTorch深度学习工具; </p> <p> (3)学员基础:需要一定的Python基础,及深度学习基础; </p> <p> (4)学员收货:掌握深度学习PyTorch工具使用;掌握TextCNN短文本分类;了解工业流行解决方案; </p> <p> (5)学员资料:内含完整程序源码和数据集; </p> <p> (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码。 </p> <p> <br /></p> <p> <img src="https://img-bss.csdnimg.cn/202007280453514217.png" alt="" /></p> <p> <br /></p> <p> <img src="https://img-bss.csdnimg.cn/202007230202113318.png" alt="" /></p> <p> <img src="https://img-bss.csdnimg.cn/202007230202316334.png" alt="" /></p> <p> <br /></p> <p> <img src="https://img-bss.csdnimg.cn/202007230203007442.png" alt="" /></p> <p> <br /></p> <p> <br /></p> <p> <img src="https://img-bss.csdnimg.cn/202007230203352570.png" alt="" /></p> <p> <br /></p> <p> <br /></p> <p> <img src="https://img-bss.csdnimg.cn/202007230203481481.png" alt="" /></p>
<p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程目标</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">学习完本门课程,您将对自然语言处理技术有更深入的了解, </span><span style="font-size:18px;">掌握基于深度学习情感分析方法;课程基于</span><span style="font-size:18px;">PyTorch</span><span style="font-size:18px;">主流框架实现,其中涉及深度学习主流框架</span><span style="font-size:18px;">LSTM</span><span style="font-size:18px;">模型以及自然语言处理的词向量;</span><span style="font-size:18px;">彻底掌握</span><span style="font-size:18px;">中文情感分析。</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">适用人群</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">想要从事NLP的在校学生、NLP研发工程师</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">自然语言处理从业者、深度学习爱好者</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程简介</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">NLP领域的热门应用,常用在舆情分析,文章分类,智能</span><span style="font-size:18px;">客服,情感分析等</span><span style="font-size:18px;">多个场景</span><span style="font-size:18px;">。情感分析作为</span><span style="font-size:18px;">自然语言处理的基础技术之一</span><span style="font-size:18px;">,常被用于电商评论、舆情监控、</span><span style="font-size:18px;color:#FF0000;">微博评论情感分析</span><span style="font-size:18px;">、话题监督等领域,</span><span style="font-size:18px;">因此深入</span><span style="font-size:18px;">掌握情感分析技术</span><span style="font-size:18px;">,是作为自然语言处理从</span><span style="font-size:18px;">业者必备技能</span><span style="font-size:18px;">,本课程以案例驱动出发,结合多个项目实战案例,覆盖多种算法,</span><span style="font-size:18px;">如</span><span style="font-size:18px;">RNN</span><span style="font-size:18px;">,</span><span style="font-size:18px;">LSTM</span><span style="font-size:18px;">等</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;color:#FF0000;">课程要求:</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(1)开发环境:python版本:Python3.7; </span><span style="font-size:18px;color:#FF0000;">torch 版本:</span><span style="font-size:18px;color:#FF0000;">1.</span><span style="font-size:18px;color:#FF0000;">3</span><span style="font-size:18px;color:#FF0000;">.0+; torch</span><span style="font-size:18px;color:#FF0000;">text</span><span style="font-size:18px;color:#FF0000;">版本</span><span style="font-size:18px;color:#FF0000;">:</span><span style="font-size:18px;color:#FF0000;">0.</span><span style="font-size:18px;color:#FF0000;">3</span><span style="font-size:18px;color:#FF0000;">.0</span><span style="font-size:18px;color:#FF0000;">+</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(2)开发工具:Pycharm;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(3)学员基础:需要一定的Python基础,及深度学习基础;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(4)学员收货:</span><span style="font-size:18px;">掌握深度学习情感分类关键</span><span style="font-size:18px;">技术;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(5)学员资料:内含完整程序源码和数据集;</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;">(6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码。</span> </p> <p style="font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100142351682.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100143361272.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100144109896.png" alt="" /><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002100144545929.png" alt="" /><br /></span> </p> <p style="text-align:left;font-size:medium;"> <span style="font-size:32px;">案例5-情感分析功能点</span> </p> <p style="text-align:center;font-size:medium;"> <img src="https://img-bss.csdn.net/202002131018235991.png" alt="" /></p> <p style="text-align:center;font-size:medium;"> <br /></p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p> <p style="text-align:center;font-size:medium;"> <span style="font-size:18px;"><br /></span> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页