一路前行1
码龄8年
关注
提问 私信
  • 博客:1,516,566
    社区:54
    1,516,620
    总访问量
  • 107
    原创
  • 2,339,047
    排名
  • 347
    粉丝
  • 1
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
  • 加入CSDN时间: 2016-07-04
博客简介:

一路前行

博客描述:
生命不息,奋斗不止
查看详细资料
个人成就
  • 获得807次点赞
  • 内容获得188次评论
  • 获得2,415次收藏
  • 代码片获得268次分享
创作历程
  • 2篇
    2020年
  • 3篇
    2019年
  • 4篇
    2018年
  • 130篇
    2017年
  • 1篇
    2016年
成就勋章
TA的专栏
  • 大数据
    18篇
  • python
    11篇
  • Machine Learning
    21篇
  • Deep Learning
    4篇
  • machine learning
    29篇
  • Deep Learning
    6篇
  • Data Mining/Analysisi
    6篇
  • big data
    19篇
  • python
    19篇
  • Android
    12篇
  • Android Problem
    4篇
  • java
    3篇
  • java web
    2篇
  • Javascript
    4篇
  • database
    3篇
  • Operating System
    5篇
  • Algorithm
    4篇
  • LeetCode
    15篇
  • svn/git
    1篇
  • HTML/CSS
  • Linux
    7篇
  • IDE
    2篇
  • competition
    3篇
  • Math
    1篇
  • Economics
    2篇
  • Game Theory
  • 杂记
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflownlp
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Tensorflow版本问题的一系列报错解决方案

一下的报错均是由于将tensorflow1版本的代码迁移到tensorflow2上产生的错误,主要是一些api的改动。 File "D:\python\paperRecurrence\CasRel\CasRel-master\model.py", line 23, in E2EModel tokens_in = Input(shape=(None,),dtype=tf.int32) File "E:\environment\python\lib\site-packages\keras\e
原创
发布博客 2020.07.01 ·
9604 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

pytorch报错RuntimeError: DataLoader worker (pid(s) 7872, 15356, 19144, 16296) exited unexpectedly

Traceback (most recent call last): File "D:/python/Dive into DL/pytorch/CH3/softmax.py", line 42, in <module> print(evaluate_accuracy(test_iter, net)) File "D:/python/Dive into DL/pytor...
原创
发布博客 2020.01.18 ·
10999 阅读 ·
4 点赞 ·
6 评论 ·
2 收藏

kaggle Santander Customer Transaction Prediction总结

记一次失败的竞赛经历数据分析1.样本不均衡。在20万训练数据集中,正样本(y=1)为2万,负样本(y=0)为18万。2.所有原始特征之间相关性很小。这一点很奇怪,很少有数据集所有特征之间相关性都很小的。3.所有特征的分布都类似。这一点也是挺奇怪,应该是主办方对数据做了某种变换。特征工程1.由于这个赛题所有特征均为匿名特征且特征之间没有什么关联,所以可以考虑对数据进行重新洗牌...
原创
发布博客 2019.04.27 ·
2212 阅读 ·
2 点赞 ·
1 评论 ·
3 收藏

天池津南数字制造算法【赛场一】第32名比赛总结

一、数据预处理 由于所给数据“脏”数据比较多,所以首先需要做大量的预处理,包括:1.处理类型错误的数据。如‘A25’列中数据应该为数值型却混入了一个‘1900/3/10 0:00’时间数据。2.处理时间数据的异常。3.处理明显的数值异常。4.使用中位数填充缺失值二、特征工程 特征工程是决定一个比赛的关键,因此在特征上我们做了大量处理,包括:1...
原创
发布博客 2019.03.25 ·
1098 阅读 ·
1 点赞 ·
5 评论 ·
3 收藏

引入lightgbm报错:OSError: [WinError 126] 找不到指定的模块。

  import lightgbm as lgb  File "D:\Python\Python36-32\lib\site-packages\lightgbm\__init__.py", line 8, in &lt;module&gt;    from .basic import Booster, Dataset  File "D:\Python\Python36-32\lib\si...
原创
发布博客 2019.02.15 ·
4322 阅读 ·
1 点赞 ·
7 评论 ·
2 收藏

python3下如何使Word2Vec每次运行结果一致

    最近在使用Word2Vec时发现一个奇怪的问题,那就是每次运行出来的结果不一致,这就是得程序复现带来了很多麻烦。多方查阅资料后终于解决了这个难题,下面说一下我的解决方案。     查阅Word2Vec的官方文档,在seed参数哪里可以发现这样的解释:seed (int) – Seed for the random number generator. Initial vectors for ...
原创
发布博客 2018.05.09 ·
2522 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

keras中call_back的设置

keras训练fit( self, x, y, batch_size=32, nb_epoch=10, verbose=1, callbacks=[], validation_split=0.0, validation_data=None, shuffle=True, class_weight
转载
发布博客 2018.02.21 ·
9256 阅读 ·
5 点赞 ·
0 评论 ·
28 收藏

神经网络调参技巧

对于神经网络的调试,如何找到一组合适的超参数呢,下面分享一些神经网络调参的方法与技巧。在使用神经网络时有许多参数需要调整,比如学习速率、Momentum(动量梯度下降法)的参数beta,Adam优化算法的参数,beta1,beta2,神经网络层数,不同层中隐藏单元数量,学习率衰减等。这些参数的调整也是有优先级顺序的,其中的一些应该优先调整,而另一些可能完全不用调整。   首先应该调整的是学
原创
发布博客 2018.02.19 ·
11437 阅读 ·
6 点赞 ·
1 评论 ·
43 收藏

特征工程

一、特征工程是什么        有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。通过总结和归纳,人们认为特征工程包括以下方面:     特征处理是特征工程的核心部分,sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维
转载
发布博客 2018.01.23 ·
2880 阅读 ·
3 点赞 ·
1 评论 ·
15 收藏

Isolation Forest算法原理

本文只介绍原论文中的 Isolation Forest 孤立点检测算法的原理,实际的代码实现详解请参照我的另一篇博客:Isolation Forest算法实现详解。       或者读者可以到我的GitHub上去下载完整的项目源码以及测试代码(源代码程序是基于maven构建): https://github.com/JeemyJohn/AnomalyDetection。前言       随着机器学习
转载
发布博客 2017.11.28 ·
1990 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

python使用pandas处理大数据节省内存技巧

一般来说,用pandas处理小于100兆的数据,性能不是问题。当用pandas来处理100兆至几个G的数据时,将会比较耗时,同时会导致程序因内存不足而运行失败。 当然,像Spark这类的工具能够胜任处理100G至几个T的大数据集,但要想充分发挥这些工具的优势,通常需要比较贵的硬件设备。而且,这些工具不像pandas那样具有丰富的进行高质量数据清洗、探索和分析的特性。对于中等规模的数据,我们的愿望是尽
转载
发布博客 2017.11.10 ·
38564 阅读 ·
32 点赞 ·
9 评论 ·
129 收藏

LightGBM参数介绍

Xgboost和LightGBM部分参数对照:Xgboots       LightGbm         booster(default=gbtree)boosting(default=gbdt)eta(default=0.3)learning_rate(default=0.1)max_depth(default=6)
原创
发布博客 2017.11.09 ·
61782 阅读 ·
21 点赞 ·
1 评论 ·
135 收藏

LeetCode-25. Reverse Nodes in k-Group

Given a linked list, reverse the nodes of a linked list k at a time and return its modified list.If the number of nodes is not a multiple of k then left-out nodes in the end should remain as it is.You
转载
发布博客 2017.11.07 ·
984 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Box-Cox变换

Box-Cox变换 1 Box-Cox变换 在回归模型号中,Box-Cox变换是对因变量Y作如下变换:             (1.1) 这里是一个待定变换参数。对不同的,所做的变换自然就不同,所以是一个变换族。它包括了对数变换(=0),平方根变换()和倒数变换(=-1)等常用变换。 图1. 变换前变量的分布 图2.变换后变量分布 对因变量的n个观测值,应用上
转载
发布博客 2017.11.06 ·
13729 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

XGBoost python调参示例

原文地址:Complete Guide to Parameter Tuning in XGBoost by Aarshay Jain 原文翻译与校对:@MOLLY && 寒小阳 (hanxiaoyang.ml@gmail.com) 时间:2016年9月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/52665396 声明:版权所有
转载
发布博客 2017.10.27 ·
14413 阅读 ·
7 点赞 ·
2 评论 ·
86 收藏

GridSearchCV调参方法

Python 2.7IDE Pychrm 5.0.3sci-kit learn 0.18.1前言抖了个机灵,不要来打我,这是没有理论依据证明的,只是模型测试出来的确有效,并且等待时间下降(约)为原来的十分之一!!刺不刺激,哈哈哈。原理基本思想:先找重点在细分,再细分,伸缩Flexible你怕不怕。以下简称这种方法为FCV不知道CV的请看@MrLevo520–总结:Bias(偏差),Error(
转载
发布博客 2017.10.26 ·
21032 阅读 ·
3 点赞 ·
3 评论 ·
24 收藏

MIT算法导论公开课第八讲全域哈希和完全哈希

全域哈希            对于任意哈希函数而言,都存在一个不好的健集,使得所有的健都会哈希到同一个槽里去,那么如何解决这种情况呢?如何防止对某个键集永远有较差的表现?如何防止竞争对手使用这个键集来降低你的性能表现? 一个词解决这个问题 —— 随机!全域哈希的方法就是随机选择一个哈希函数H(当然不是每次操作都选择一个哈希函数,而是构建一个哈希表的时候随机选一个,选定之后这个
原创
发布博客 2017.10.25 ·
1982 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

MIT算法导论公开课第七讲哈希表

哈希表又称散列表,其定义是根据一个哈希函数将集合S中的关键字映射到一个表中,这个表就称为哈希表,而这种方法就称为Hashing。从作用上来讲,构建哈希表的目的是把搜索的时间复杂度降低到O(1),考虑到一个长度为n的序列,如果依次去比较进行搜索的话,时间复杂度是θ(n),或者对其先进行排序然后再搜索会更快一些,但这两种方法都不是最快的方法。一、直接寻址表      直接寻址表
原创
发布博客 2017.10.22 ·
637 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

提高深度学习和机器学习性能的方法

20个你可以用来避免过拟合和得到更好的泛化的技巧
转载
发布博客 2017.10.21 ·
1601 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

Gradient Boosting Machine(GBM)调参方法详解

原文地址:Complete Guide to Parameter Tuni

转载
发布博客 2017.10.21 ·
7453 阅读 ·
4 点赞 ·
0 评论 ·
15 收藏
加载更多