R语言实战之基本统计分析

数据样本

这里写图片描述

列联表
以列表方式表示两个(或多个)变量或属性共同出现的频率。 或者是将两个属性变量的不同取值置于行和列的位置,在表格中填入变量组合取值的频数的表格。
这里写图片描述

#描述性统计Fenix
summary(stock)  #最小值,最大值,中位数。平均值,四分位数
# sapply(stock, FUN = ,options)
fivenum() #图基五数
# library(Hmisc)
# describe(stock)
library(pastecs)
library(boot)
stat.desc(stock)
library(psych)  #describe(stock)
stock=read.csv('hs_stock.csv')
#分组计算描述性统计量
var_names=names(stock)[2:7]
agg_mean=aggregate(stock[var_names],by=list(mean=stokc$code),mean)
agg_sd=aggregate(stock[var_names],by=list(mean=stokc$code),sd)

mystats<-function(x,na.omit=FALSE){
  if (na.omit)
    x<-x[!is.na()]
  m<-mean(x)
  s<-sd(x)
  n<-length(x)
  skew<-sum((x-m)^3/s^3)/n
  kurt<-sum((x-m)^3/s^4)/n-3
  q<-quantile(x,c(.6))
  return(c(n=n,mena=m,stdev=s,q6=q,skew=skew,kurtosis=kurt))
}

#一维列联表

mytable=with(data,table(Improved))

prop.table(mytable)
#二维列联表
xtabs(~Sex+Improved,data=data)
margin.table(myta,1)
#下标1指代table语句中的第一个变量
prop.table(myta,1)

#R语言的相关系数包括Pearson/Spearman,Kendall,ploychoric,polyserial
cor(stock[,c(2:15)],method='spearman')
#偏相关是指控制一个或者多个定量变量时,另外两个定量变量的先关关系
pcor()

#相关性的显著性检验  use='pairwise'or 'complete'(分别表示对缺失值执行删除或者行删除
library(psych)
corr.test(stock[,c(2:15)])

相关性
这里写图片描述
相关性的显著性检验

这里写图片描述

这里写图片描述

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weiyudang11/article/details/51544791
个人分类: 数据分析
想对作者说点什么? 我来说一句

网络数据的统计分析_R语言实践

2017年06月05日 29.2MB 下载

学习R - Richard Cotton.azw3

2016年02月24日 2.63MB 下载

没有更多推荐了,返回首页

不良信息举报

R语言实战之基本统计分析

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭