目前scRNA-seq将每个转录物与单个细胞相关联,但关于这些转录物在组织中的位置信息丢失了;相反的,空间转录组学技术知道转录物的位置,却不知道是哪个细胞产生了转录物。因此,scRNA-seq与空间转录组学的整合可以产生组织中细胞亚群的高分辨率图谱。
来自美国的科研人员在《Nature reviews genetics》发表综述文章,回顾了整合scRNA-seq与空间转录组学技术研究的尝试和努力,包括新兴的整合计算方法,并提出了有效结合当前方法的途径。

整合scRNA-seq和空间转录组学研究的流程模式
scRNA-seq+空间组学整合分析的研究进展
目前已有整合空间转录组学和scRNA-seq数据分析的研究,提供了组织组成和功能的新见解。下表展示了相关的研究现状,包括正常的组织稳态和发育、肿瘤微环境、其他病变和损伤的微环境等方向。

解析scRNA-seq和空间转录组数据的研究
本文综述了scRNA-seq与空间转录组学的整合分析方法,探讨了去卷积和映射策略,以及未来的发展趋势,如深度学习模型和实时细胞追踪。通过整合分析,可以揭示组织中细胞亚群的高分辨率图谱,为疾病研究和治疗提供新见解。
最低0.47元/天 解锁文章
1230

被折叠的 条评论
为什么被折叠?



