机器学习与人工智能
文章平均质量分 94
机器学习和人工智能相关的知识的讲解以及学习
问道飞鱼
长期从事服务后端开发,擅长微服务高并发架构设计, 熟悉云原技术栈,可以提供完整后端解决方案。 如有志同道合的朋友可以一起学习,共同进步, 如果商务合作意向也可联系。
展开
-
【人工智能】人工智能,深度学习与人工神经网络
人工智能旨在通过计算机系统和算法,使机器能够执行通常需要人类智慧才能完成的任务,包括学习、推理、感知、理解和创造等活动。其发展以算法、计算和数据为驱动力,其中算法是核心,计算和数据是基础。深度学习通过构建多层神经网络来模拟人脑的学习过程,这些网络能够从大量数据中自动提取有用的特征,并基于这些特征进行决策或预测。深度学习的核心在于其网络结构的深度,即包含多个隐藏层,这些层能够学习到数据中的高级抽象表示。人工神经网络是一种运算模型,由大量的节点(或称神经元)相互联接而成。原创 2024-12-02 23:39:48 · 1139 阅读 · 0 评论 -
【机器学习】支持向量机SVM算法深入解读
支持向量机(Support Vector Machine,SVM)是一种强大的机器学习算法,用于分类、回归分析,以及在一些未标记数据集上的分布估计。SVM的核心思想是找到一个超平面(在二维空间中是一条直线,在更高维空间中是一个平面),这个超平面能够最好地分隔不同类别的数据点。超平面(Hyperplane)在n维空间中,超平面是n-1维的。例如,在三维空间中,超平面是一个平面。支持向量(Support Vectors)这些是距离超平面最近的训练数据点。它们是最关键的点,因为它们决定了超平面的位置和方向。原创 2024-11-04 06:00:00 · 1127 阅读 · 0 评论 -
【机器学习】机器学习算法-线性回归算法
线性回归(Linear Regression)是统计学中的一种基本算法,用于模拟一个或多个自变量(解释变量)与因变量(响应变量)之间的线性关系。线性回归的目标是找到最佳拟合直线(或平面),这条直线可以最小化观测值和预测值之间的差异。原创 2024-11-02 17:13:38 · 915 阅读 · 0 评论 -
【机器学习】简单易懂的聚类算法K-Means
K-Means 是一种广泛使用的聚类算法,其目的是将数据集分成 K 个聚类,其中每个数据点都属于最近的均值(质心)所代表的聚类。K-Means 算法的执行过程简单明了,但也有一些局限性。原创 2024-10-21 19:21:43 · 1982 阅读 · 0 评论 -
【机器学习】机器学习算法-决策树算法
决策树(Decision Tree)是一种常用的数据挖掘和机器学习算法,主要用于分类和回归任务。决策树通过从根节点到叶节点的路径来表示决策规则,其中每个内部节点代表一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一个类别或输出值。信息增益越大,说明该特征对数据集的分类贡献越大。信息增益偏向于选择具有较多唯一值的特征,因为它更容易减少熵。信息增益比通过除以分割信息来标准化信息增益,使得选择特征更加公平。通过预剪枝和后剪枝,可以有效地防止决策树过拟合,并提高模型的泛化能力。原创 2024-09-11 20:36:03 · 1104 阅读 · 0 评论 -
【机器学习】机器学习入门篇
机器学习,机器学习框架, 机器学习算法原创 2024-09-09 22:33:34 · 1423 阅读 · 0 评论
分享