数据结构之线性表 本文是coursera的课程(数据结构基础)的学习笔记:https://www.coursera.org/learn/shuju-jiegou-suanfa线性表的概念线性表简称表,是零或多个元素的有穷序列,通常可以表示成K1,K2,…….,Kn(n>=1) 表目:线性表中元素(可包含多个数据项,记录)索引(下标):i称为表目k1的“索引”或“下标”表的长度:线性表中所含元素的个数n空表:长度为零
Scala高阶函数、闭包、柯里化 一、高阶函数二、闭包三、柯里化四、Actor一、高阶函数scala的高阶函数:二、闭包scala 的闭包:函数里面引用外面类成员变量叫作闭包.例:三、柯里化四、Actorscala的多线程Actor是异步通信的,没有java死锁情况.最近java提供的NIO(new IO),框架是Netty;scala的多线程Actor框架是akka。scala的多线程是用它来实现的。scala的actor简单使
Scala集合 一、scala集合类型二、scala集合操作 (1)scala list操作 (2)scala map操作三、 scala集合函数操作 (1)函数操作和wordcount编写 (2)filter (3)zip拉链操作 (4)Scala版wordcount一、scala集合类型二、scala集合操作 (1)scala list操作 (2)scala m
Scala初识 一:Object、Trait、Class二:scala类型三:基本操作一:Object、Trait、ClassScala三个类:Object、Trait、Class 区别与联系trait 是介于抽象类和接口中间,多继承;trait 里面可以有方法体,Java的接口就不能有;trait又和抽象类不一样,它可以多继承,并且是无参数构造器;所以是介于两者之间的,它的出现就是为了多继承,并且能写实体的方法
算法设计与分析(三)之贪心算法 前面两篇:算法设计与分析之分治思想算法设计与分析(二)之动态规划贪心算法的特点设计要素:贪心法适用于组合优化问题。求解过程是多不判断过程,最终的判断序列对应于问题的最优解。依据某种“短视的”贪心选择性质判断,性质好坏决定算法的成败。贪心法必须进行正确性证明。证明贪心法不正确的技巧:举反例。贪心法的优势:算法简单,时间和空间复杂性低最优装载问题问题:n个集装箱1,2,3,…..,n装上轮船,集装箱i
深度学习(十)之序列建模:循环和递归网络① 循环神经网络或RNN是一类用于处理序列数据的神经网络。就像卷积网络是专门用于处理网格化数据X(如一个图像)的神经网络,循环神经网络是专门用于处理序列 的神经网络。正如卷积网络可以很容易地扩展到具体宽度和高度的图像,以及处理大小可变的图像,循环网络可以扩展到更长的序列(比不基于序列的特化网络长得多)。大多数循环网络也能处理可变长度的序列。10.1 展开计算图计算图是形式化一组计算结构的方式,如那些涉
深度学习(九)之卷积网络② 本文继续简述卷积网络的知识点,上一篇深度学习(九)之卷积网络①9.5 基本卷积函数的变体当在神经网络的上下文中讨论卷积时,我们通常不是特指数学文献中使用的那种标准的离散卷积运算。实际应用中的函数略有不同。首先,当我们提到神经网络中的卷积时,我们通常是指有多个并行卷积组成的运算。另外,输入通常也不仅仅是实值的网络,而是由一系列观测数据的向量构成的网格。例如,一幅彩色图像在每一个像素点会有红蓝绿三种颜
Zookeeper知识点总结 本文是大数据学习总结系列第二篇之ZooKeeper,上一篇是hadoopHadoop知识点整理本文是根据《从Paxos到Zookeeper 分布式一致性原理与实践》的知识点进行整理总结。一、 从集中式到分布式1. 集中式2. 分布式3. ACID4. CAP5. BASE二、 一致性1. 2PC2. 3PC
深度学习(九)之卷积网络① 卷积网络,也叫卷积神经网络(CNN),是一种专门依赖处理具有类似网络结构的数据的神经网络。卷积是一种特殊的线性运算。卷积网络是指那些至少在网络的一层中使用卷积运算来代替一般的矩阵乘法运算的神经网络。9.1 卷积运算在通常形式中,卷积是对两个变体函数的一种数学运算。假设我们正在用激光传感器追踪一艘宇宙飞船的位置。我们的机关传感器给出一个单独的输出x(t),表示宇宙飞船在时刻t的位置。
算法设计与分析 算法基础问题求解的关键建模: 对输入参数和解给出形式化或半形式化的描述设计算法: 采用什么算法设计技术 正确性--是否对所有的实例都得到正确的解分析算法--效率算法+数据结构=程序好的算法提高求解问题的效率节省存储空间算法的研究目标问题->建模并寻找算法 算法设计技术算法->算法的评价