不来也不去的一只失忆蝴蝶

曾迷途才怕追不上满街赶路人

[2017集训队作业自选题#148]Simple Summation Problem

题目大意定义一个积性函数F。 若p为质数,F(pd)=pd−[d mod p!=0]F(p^d)=p^{d-[d\ mod\ p!=0]} 求F的前缀和。做法令G=F∗μG=F*\mu,那么G也是一个积性函数。 那么容易得到G(pd)=pd−[d mod p!=0]−pd−1−[(d−1) ...

2017-12-21 21:20:48

阅读数:257

评论数:0

[2017集训队作业自选题#134]Counting Divisors (square)

题目大意&题解同SPOJ DIVCNT2#include<cstdio> #include<algorithm> #include<cmath> #define fo(i,a,b) for(i=a;i<=b;i++) using namespace...

2017-12-21 21:14:58

阅读数:233

评论数:0

Psy

题目大意一个字符集为0~9的长度为n的数字串,f(n)为其本身的字典序在所有后缀中是严格最小的字符串的数量。 求∑ni=1f(i)∗i2\sum_{i=1}^nf(i)*i^2结论我们发现一个有周期的串的本身不可能是严格最小后缀。 对于没有周期的串,当做循环串来看,可以转出n个不同的字符串,一...

2017-11-23 15:32:20

阅读数:347

评论数:0

[2017集训队作业自选题#115]Replace All

题解推荐wxh 可爱的修修 本题相较于CF794G,n加0了。 我们需要快速计算 ∑ni=1∑nj=12(i,j)\sum_{i=1}^n\sum_{j=1}^n2^{(i,j)} ∑nd=12d∑n/di=1∑n/dj=1[(i,j)=1]\sum_{d=1}^n2^d\sum_{i=...

2017-11-17 10:55:59

阅读数:515

评论数:0

春思

题目大意求a^b的约数和。基础题分解出a的质因数即可,然后算等比数列和可以倍增。#include<cstdio> #include<algorithm> #include<cmath> #define fo(i,a,b) for(i=a;i<=b;i++)...

2017-09-11 22:27:23

阅读数:171

评论数:0

[51nod1355]斐波那契的最小公倍数

题目大意求n个斐波那契数的最小公倍数。做法首先斐波那契数列有性质(fn,fm)=f(n,m)(f_n,f_m)=f_{(n,m)} 具体证明不证了,烂大街的性质了。 构造数列g满足 fn=Πd|ngdf_n=\Pi_{d|n}g_d 可以用莫比乌斯反演求出g gn=Πd|nfμ(nd)d...

2017-06-25 22:33:29

阅读数:287

评论数:0

[CodeM初赛A轮]D

题解用sqrt(a)/log a的时间分解质因数。 枚举一个质因数x,所有x的倍数节点打标记。 对于每一个被标记的联通块求直径。#include<cstdio> #include<algorithm> #include<map> #define fo(i,a...

2017-06-18 22:18:59

阅读数:356

评论数:3

[bzoj4815][CQOI2017]小Q的表格

题目描述小Q是个程序员。 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理。每当小Q不知道如何解决 时,就只好向你求助。为了完成任务,小Q需要列一个表格,表格有无穷多行,无穷多列,行和列都从1开始标号。 为了完成任务,表格里面每个格子都填了一个整数,为了方便描...

2017-06-16 17:12:32

阅读数:398

评论数:0

[JZOJ5134][SDOI省队集训2017]三元组

题目大意求∑ai=1∑bj=1∑ck=1[(i,j)=1][(i,k)=1][(j,k)=1]\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c[(i,j)=1][(i,k)=1][(j,k)=1]推式子首先假设a<=b<=c。 第一步转化为 ∑ai=1∑bj...

2017-06-09 21:24:28

阅读数:370

评论数:0

[bzoj4816][SDOI2017]数字表格

题目描述Doris刚刚学习了fibonacci数列。用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)...

2017-04-19 22:38:09

阅读数:438

评论数:0

蛋糕

题目大意CJY很喜欢吃蛋糕,于是YJC弄到了一块蛋糕,现在YJC决定和CJY分享蛋糕。 这块蛋糕上有n^2颗葡萄干,排成了一个n*n的点阵,每颗葡萄干互不相同且被编号为1~n^2。YJC决定沿着一条直线把蛋糕切成两份。YJC和CJY都很喜欢吃葡萄干,所以切出的两份蛋糕必须都包含至少一颗葡萄干。同...

2017-04-18 11:32:40

阅读数:347

评论数:0

统计

题目描述给定n,k,求满足一下条件的整数数组a[]的数量: 1.a[]中共有k个元素; 2. a[i] ∈ [1,n]; 3. ∀i∈[1,k),a[i]≤a[i+1]; 4、gcd(a1,a2…ak)=1 答案可能很大,请mod(109+7)后输...

2017-04-18 10:41:30

阅读数:162

评论数:0

[51nod1238]最小公倍数之和

题目大意出一个数N,输出小于等于N的所有数,两两之间的最小公倍数之和。题解太懒了 这里写的很好#include<cstdio> #include<algorithm> #define fo(i,a,b) for(i=a;i<=b;i++) using namespa...

2017-04-18 10:31:24

阅读数:290

评论数:0

[luoguP3601]签到题

题目大意求[l,r]区间phi函数和。 l和r均在10^12内,而l和r的差在10^6内。筛phi都知道怎么求了。 一个10^12的数至多一个大于10^6的质因子。 筛出10^6内所有质因数,然后枚举每个质因数。 用这个质因数去[l,r]筛。 最后再扫一遍判断大于10^6的质因子的情况。...

2017-02-15 14:55:09

阅读数:212

评论数:0

[51nod 1222]最小公倍数计数

题目大意求有多少对a和b满足a<=b且l<=[a,b]<=r数论题区间[l,r]答案等于[1,r]-[1,l-1] a<=b暂且不考虑。为了方便,接下来都不写下取整,出现除法即为整除。 ∑ni=1∑nj=1[ij(i,j)<=n]\sum_{i=1}^n\sum_...

2017-01-17 22:35:51

阅读数:434

评论数:0

[51nod 1184]第N个质数

题目大意找第n个质数,n<=1e9乱搞Drin_E大爷教我的洲阁筛。 但是好像不是正统。 我们可以二分,所以只是判断质数个数的问题。 设c[i]表示第i个质数。 f[i]表示i以内质数个数。 设g(n,m)表示n以内不被c[1~m]整除的数个数。 设q=√n,那么n以内质数个数为...

2017-01-12 20:52:02

阅读数:1517

评论数:0

[51nod 1333]无聊的数学家

题目描述http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1333做法很有趣的题目。 首先,怎么知道对方无法100%猜中? 考虑对方什么时候100%猜中。显然是拿了个质数。 因此和S一定不可以被表示成质数+1,不然对方...

2017-01-12 20:32:08

阅读数:247

评论数:0

[51nod 1362]搬箱子

题目描述有一个n*m的棋盘,左上角为(0,0),右下角为(n,m).在左上角有一个箱子(箱子是放在交叉点上的)。现在要把箱子搬到最后一排。搬的时候只有向右,向下,或者向右下方走一步。也就是说,假如箱子在(x,y),那么下一步只能把他搬到(x+1,y)或(x,y+1)或(x+1,y+1). 问有多...

2016-12-21 22:43:21

阅读数:452

评论数:0

[51nod 1203]JZPLCM

题目大意求区间lcm。带模运算。做法不知道有没有更简单的做法。 最小公倍数是什么意思?一堆数的最小公倍数,就是对于每一个质数p,这些数每个数中p的次数的最大值k,然后最小公倍数就会包含一个p^k。 p很大时k会很小,p很小时k会很大,这是两个互相制约的因素,因此考虑使用两种算法然后进行平衡结合...

2016-12-12 22:24:27

阅读数:470

评论数:0

[51nod 1594]Gcd and Phi

题目大意求所有(i,j)满足1<=i<=n和1<=j<=n,phi(i)和phi(j)的gcd的欧拉函数值和。数论题挺简单的。 枚举gcd然后莫比乌斯反演一波。 接下来的式子中需要用到的均能够进行n log n预处理。 式子不太想写了, 可以看看代码。#include...

2016-12-12 22:13:32

阅读数:334

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭