[51nod 1537]分解

487人阅读 评论(0) 收藏 举报
分类:

题目大意

是否存在整数m使得(1+2)n=m+(m1)

结论

首先n=1存在解。
假设n=k时存在解,易证n=k+1也必然存在解。
于是设(1+2)n=an+bn2
a与b可以用矩阵乘法快速算出,再分类讨论n的奇偶性得到m。

#include<cstdio> 
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int mo=1000000007;
struct dong{
    int a[3][3];
    friend dong operator *(dong a,dong b){
        int i,j,k;
        dong c;
        fo(i,1,2)
            fo(j,1,2)
                c.a[i][j]=0;
        fo(k,1,2)
            fo(i,1,2)
                fo(j,1,2)
                    c.a[i][j]=(c.a[i][j]+(ll)a.a[i][k]*b.a[k][j]%mo)%mo;
        return c;
    }
};
dong kqp,ans,tmp;
int i,j,k,l,t,m,top,s[80];
ll n,nn,a,b;
int main(){
    scanf("%lld",&n);
    nn=n;
    if (n==1){
        printf("2\n");
        return 0;
    }
    ans.a[1][1]=ans.a[2][2]=1;
    ans.a[2][1]=ans.a[1][2]=0;
    tmp.a[1][1]=tmp.a[1][2]=tmp.a[2][2]=1;
    tmp.a[2][1]=2;
    n--;
    while (n){
        s[++top]=n%2;
        n/=2;
    }
    while (top){
        ans=ans*ans;
        if (s[top--]) ans=ans*tmp;
    }
    kqp.a[1][1]=kqp.a[1][2]=1;
    ans=kqp*ans;
    a=ans.a[1][1];b=ans.a[1][2];
    if (nn%2) m=(ll)2*b%mo*b%mo;else m=(ll)a*a%mo;
    printf("%d\n",m);
}
查看评论

51nod 1537 分解 (矩阵快速幂)

题目链接 1537 分解 基准时间限制:0.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  取消关注 ...
  • fouzhe
  • fouzhe
  • 2016-09-30 00:38:40
  • 302

51nod-1537分解

51nod矩阵快速幂
  • hrr397117313
  • hrr397117313
  • 2016-09-01 14:04:31
  • 447

51nod 1537 分解(矩阵快速幂)

参考:http://blog.csdn.net/qingshui23/article/details/52350523 标程中提到了构造对偶式,我去,这咋整啊,搞不了 但是就根据标程来推,这些东西...
  • gyhguoge01234
  • gyhguoge01234
  • 2017-08-08 16:30:00
  • 155

[51nod 1537]分解

题目大意是否存在整数m使得(1+√2)n=√m+√(m−1)(1+√2)^n=√m+√(m-1)结论首先n=1存在解。 假设n=k时存在解,易证n=k+1也必然存在解。 于是设(1+√2)n=an...
  • WerKeyTom_FTD
  • WerKeyTom_FTD
  • 2016-09-02 21:43:42
  • 487

基于斐波那契数列的正整数<em>分解</em>算法

51nod oj <em>1537</em> <em>分解</em> 【类斐波那契数列的矩阵求法】 自然数拆分成任意个自然数相加算法 立即下载 上传者: romantictulip 时间: 2010-09-10 综合评分: 5 积分...
  • 2018年04月01日 00:00

51NOD 1537 分解(矩阵快速幂)——算法马拉松17(告别奥运)

传送门问 (1+2√)n(1+\sqrt 2) ^n 能否分解成 m−−√+(√m−1)\sqrt m +\sqrt(m-1)的形式 如果可以 输出 m MOD (109+7)m\ MOD\ (1...
  • qingshui23
  • qingshui23
  • 2016-08-29 09:59:52
  • 844

51NOD 1537 分解

1537 分解 基准时间限制:0.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题问(1+sqrt(2)) ^n 能否分解成 sqrt(m) +sqrt(m-1)的形式 如...
  • LuRiCheng
  • LuRiCheng
  • 2016-09-01 14:47:20
  • 3415

51nod 1537 分解

矩阵快速幂XJB乱搞一下,没严格证明准确性。 #include using namespace std; const int siz=2; long long mod=1e9+7; struct...
  • xin_jun
  • xin_jun
  • 2016-12-07 20:21:12
  • 67

51nod 1537 分解(矩阵快速幂)

1537 分解 基准时间限制:0.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注  问(1+sqrt(2)) ...
  • yjf3151731373
  • yjf3151731373
  • 2017-09-04 19:55:08
  • 80

51nod 1400 序列分解(DFS + 剪枝)

51nod 1400 序列分解(DFS + 剪枝)
  • u013790563
  • u013790563
  • 2015-07-08 14:19:08
  • 767
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 39万+
    积分: 1万+
    排名: 1459
    最新评论
    文章分类