[51nod 1537]分解

版权声明:本文是蒟蒻写出来的,神犇转载也要说一声哦! https://blog.csdn.net/WerKeyTom_FTD/article/details/52419242

题目大意

是否存在整数m使得(1+2)n=m+(m1)

结论

首先n=1存在解。
假设n=k时存在解,易证n=k+1也必然存在解。
于是设(1+2)n=an+bn2
a与b可以用矩阵乘法快速算出,再分类讨论n的奇偶性得到m。

#include<cstdio> 
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int mo=1000000007;
struct dong{
    int a[3][3];
    friend dong operator *(dong a,dong b){
        int i,j,k;
        dong c;
        fo(i,1,2)
            fo(j,1,2)
                c.a[i][j]=0;
        fo(k,1,2)
            fo(i,1,2)
                fo(j,1,2)
                    c.a[i][j]=(c.a[i][j]+(ll)a.a[i][k]*b.a[k][j]%mo)%mo;
        return c;
    }
};
dong kqp,ans,tmp;
int i,j,k,l,t,m,top,s[80];
ll n,nn,a,b;
int main(){
    scanf("%lld",&n);
    nn=n;
    if (n==1){
        printf("2\n");
        return 0;
    }
    ans.a[1][1]=ans.a[2][2]=1;
    ans.a[2][1]=ans.a[1][2]=0;
    tmp.a[1][1]=tmp.a[1][2]=tmp.a[2][2]=1;
    tmp.a[2][1]=2;
    n--;
    while (n){
        s[++top]=n%2;
        n/=2;
    }
    while (top){
        ans=ans*ans;
        if (s[top--]) ans=ans*tmp;
    }
    kqp.a[1][1]=kqp.a[1][2]=1;
    ans=kqp*ans;
    a=ans.a[1][1];b=ans.a[1][2];
    if (nn%2) m=(ll)2*b%mo*b%mo;else m=(ll)a*a%mo;
    printf("%d\n",m);
}
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页