今天在论坛上有这样的一道题目:
http://www.iteye.com/topic/15295
自己做了之后,也看看了一些别人的算法,发现跟其中一个人的差不多,所以就没有跟帖了,把自己的答案贴在了这里。
题目:
假设有这样一种字符串,它们的长度不大于 26 ,而且若一个这样的字符串其长度为 m ,则这个字符串必定由 a, b, c ... z 中的前 m 个字母构成,同时我们保证每个字母出现且仅出现一次。比方说某个字符串长度为 5 ,那么它一定是由 a, b, c, d, e 这 5 个字母构成,不会多一个也不会少一个。嗯嗯,这样一来,一旦长度确定,这个字符串中有哪些字母也就确定了,唯一的区别就是这些字母的前后顺序而已。
现在我们用一个由大写字母 A 和 B 构成的序列来描述这类字符串里各个字母的前后顺序:
如果字母 b 在字母 a 的后面,那么序列的第一个字母就是 A (After),否则序列的第一个字母就是 B (Before);
如果字母 c 在字母 b 的后面,那么序列的第二个字母就是 A ,否则就是 B;
如果字母 d 在字母 c 的后面,那么 …… 不用多说了吧?直到这个字符串的结束。
这规则甚是简单,不过有个问题就是同一个 AB 序列,可能有多个字符串都与之相符,比方说序列“ABA”,就有“acdb”、“cadb”等等好几种可能性。说的专业一点,这一个序列实际上对应了一个字符串集合。那么现在问题来了:给你一个这样的 AB 序列,问你究竟有多少个不同的字符串能够与之相符?或者说这个序列对应的字符串集合有多大?注意,只要求个数,不要求枚举所有的字符串。
现在我们用一个由大写字母 A 和 B 构成的序列来描述这类字符串里各个字母的前后顺序:
如果字母 b 在字母 a 的后面,那么序列的第一个字母就是 A (After),否则序列的第一个字母就是 B (Before);
如果字母 c 在字母 b 的后面,那么序列的第二个字母就是 A ,否则就是 B;
如果字母 d 在字母 c 的后面,那么 …… 不用多说了吧?直到这个字符串的结束。
这规则甚是简单,不过有个问题就是同一个 AB 序列,可能有多个字符串都与之相符,比方说序列“ABA”,就有“acdb”、“cadb”等等好几种可能性。说的专业一点,这一个序列实际上对应了一个字符串集合。那么现在问题来了:给你一个这样的 AB 序列,问你究竟有多少个不同的字符串能够与之相符?或者说这个序列对应的字符串集合有多大?注意,只要求个数,不要求枚举所有的字符串。
分析:
由于后一个字母可以放置的位置与前一个字母放置的位置preAlphabetPosition有关,用递归法可以得到答案
我的解法:
public class CountAllPossible
{
/**
* @param args
*/
public static void main(String[] args)
{
// TODO Auto-generated method stub
int sum=countAllPossible("ABA");
System.out.println(sum);
}
public static int countAllPossible(String str)
{
return count(str,0,1);
}
public static int count(String subStr,int preAlphabetPosition,int allPossiblePosition)
{
if(subStr.charAt(0)!='A'&&subStr.charAt(0)!='B')
throw new IllegalArgumentException();
int sum=0;
if(subStr.charAt(0)=='A')
{
for (int index = 0; index <= preAlphabetPosition; index++)
{
if(subStr.length()==1)
{
sum+=1;//reach the end
}
else
{
sum+=count(subStr.substring(1),index,allPossiblePosition+1);
}
}
}
else//='B'
{
for(int index=preAlphabetPosition+1;index<=allPossiblePosition;index++)
{
if(subStr.length()==1)//reach the end
{
sum+=1;
}
else
{
sum+=count(subStr.substring(1),index,allPossiblePosition+1);
}
}
}
return sum;
}
}