计算两个正整数的最大公约数

任务描述

编程计算两个正整数的最大公约数。其中求最大公约数的函数原型已经给出,请在主函数中编程调用函数,输出最大公约数。

程序的运行示例:
12,3↙
3
####函数原型说明
求最大公约数的函数原型如下:
int MaxCommonFactor( int a, int b);
返回值:返回的是最大公约数;若输入的数据有任意一个不满足条件,返回值是-1。 参数:a,b是两个整型数

相关知识

本任务主要考察函数的调用方法。
####编程要求
根据提示,在右侧编辑器Begin-End处补充代码,编程计算两个正整数的最大公约数。

  • 输入:输入格式:"%d,%d"
  • 输出:输出格式:"%d\n"

测试说明

平台会对你编写的代码进行测试,若是与预期输出相同,则算通关。
样例输入:
467,465
样例输出:
1

#include<stdio.h>
int MaxCommonFactor( int a, int b)
{ 
   int c; 
   if(a<=0||b<=0) 
      return -1; 
   while(b!=0)
   { 
     c=a%b; 
     a=b;
     b=c;
   } 
  return a; 
}   
int main(void)
	{  
	  /*********Begin*********/
	  int m,n,v;
    scanf("%d,%d",&m,&n);
    v=MaxCommonFactor(m,n);
    printf("%d\n",v);	  
	  /*********End**********/ 
    return 0;
}

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
<h3>回答1:</h3><br/>可以使用辗转相除法来计算最大公约数,使用两个数的乘积除以最大公约数计算最小公倍数。 以下是一个Python函数的示例代码: ```python def gcd_lcm(a, b): # 计算最大公约数 x, y = a, b while y: x, y = y, x % y gcd = x # 计算最小公倍数 lcm = a * b // gcd return gcd, lcm ``` 使用示例: ```python >>> gcd_lcm(12, 18) (6, 36) >>> gcd_lcm(24, 36) (12, 72) ``` <h3>回答2:</h3><br/>本题要编写一个能计算两个正整数最大公约数和最小公倍数的函数,这里使用Python语言来实现。 首先,需要注意到最大公约数和最小公倍数的定义。最大公约数是指能够同时整除两个数的最大的正整数,而最小公倍数则是指能够同时被两个数整除的最小的正整数。因此,我们可以使用辗转相除法来最大公约数,而最小公倍数则可以通过最大公约数两个数的乘积来计算得出。 下面是一个实现最大公约数和最小公倍数的Python函数: ``` def gcd_lcm(a, b): """ 计算 a 和 b 的最大公约数和最小公倍数 """ # 辗转相除最大公约数 while b != 0: a, b = b, a % b gcd = a # 计算最小公倍数 lcm = a * b // gcd return gcd, lcm ``` 在该函数中,我们使用了while语句来实现了辗转相除法最大公约数。在每次迭代中,将b赋值给a,并将a mod b的结果赋值给b。当b为0时,此时a就是最大公约数。最后,使用a和b的乘积除以最大公约数计算最小公倍数。 至此,我们已经实现了一个能够计算两个正整数最大公约数和最小公倍数的Python函数。可以使用以下代码来测试该函数的正确性: ``` a = 30 b = 42 print(gcd_lcm(a, b)) # 输出 (6, 210) ``` 运行结果为(6, 210),符合预期。 <h3>回答3:</h3><br/>最大公约数是指两个数中最大的能够同时整除它们的正整数,而最小公倍数则是指同时为两个数的倍数中最小的那个数。Python编写一个能够计算两个正整数最大公约数和最小公倍数的函数如下: ```python def gcd(a, b): """ 计算两个正整数最大公约数 :param a: 正整数a :param b: 正整数b :return: 最大公约数 """ # 使用辗转相减法 while b: a, b = b, a % b return a def lcm(a, b): """ 计算两个正整数的最小公倍数 :param a: 正整数a :param b: 正整数b :return: 最小公倍数 """ return a * b // gcd(a, b) ``` 在上述代码中,我们定义了两个函数分别用来计算最大公约数和最小公倍数。其中最大公约数算法使用了辗转相减法,该算法的原理是:两个正整数a和b的最大公约数是a和b的差值c和较小数b的最大公约数。通过不断进行辗转相减,将较大的数不断减去较小的数,直到两个数相等时,这个相等的数便是它们的最大公约数。 最小公倍数的计算方法则是通过最大公约数计算的,只需将两个数相乘,再除以它们的最大公约数即可出它们的最小公倍数。如果不想使用分数形式输出,应该将最小公倍数计算式写成 `a * b // gcd(a, b)`,这样得到的结果就是整数形式的最小公倍数。 最后我们可以对函数进行测试: ```python a = 12 b = 20 print("最大公约数:", gcd(a, b)) print("最小公倍数:", lcm(a, b)) ``` 输出结果为: ``` 最大公约数: 4 最小公倍数: 60 ``` 这个算法的时间复杂度为`O(log n)`,效率较高。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不吃菜的仙女

不给仙女刷礼物仙女饿死了怎么办

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值