整数划分问题

整数划分问题是将一个正整数n拆成一组数连加并等于n的形式,且这组数中的最大加数不大于n。
    如6的整数划分为
   
    6
    5 + 1
    4 + 2, 4 + 1 + 1
    3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1
    2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1
    1 + 1 + 1 + 1 + 1 + 1
   
    共11种。下面介绍一种通过递归方法得到一个正整数的划分数。
   
    递归函数的声明为 int split(int n, int m);其中n为要划分的正整数,m是划分中的最大加数(当m > n时,最大加数为n),
    1 当n = 1或m = 1时,split的值为1,可根据上例看出,只有一个划分1 或 1 + 1 + 1 + 1 + 1 + 1
    可用程序表示为if(n == 1 || m == 1) return 1;
   
    2 下面看一看m 和 n的关系。它们有三种关系
    (1) m > n
    在整数划分中实际上最大加数不能大于n,因此在这种情况可以等价为split(n, n);
    可用程序表示为if(m > n) return split(n, n);   
    (2) m = n
    这种情况可用递归表示为split(n, m - 1) + 1,从以上例子中可以看出,就是最大加
    数为6和小于6的划分之和
    用程序表示为if(m == n) return (split(n, m - 1) + 1);
    (3) m < n
    这是最一般的情况,在划分的大多数时都是这种情况。
    从上例可以看出,设m = 4,那split(6, 4)的值是最大加数小于4划分数和整数2的划分数的和。
    因此,split(n, m)可表示为split(n, m - 1) + split(n - m, m)
   
    根据以上描述,可得源程序如下:

public class Zhengshuhuafen {

    public static int spl(int n, int m){
        if(n<1||m<1){
            return 0;
        }
        if(n==1||m==1){
            return 1;
        }
        if(n<m){
            return spl(n,n);
        }
        if(n==m){
            return (1+spl(n,n-1));
        }
        if(n>m){
            return (spl(n,m-1)+spl(n-m,m));
        }
        return 0;
    }
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        System.out.println(spl(6,6));
    }

}

 

将正整数划分成连续的正整数之和
如15可以划分成4种连续整数相加的形式:
15
7 8
4 5 6
1 2 3 4 5

    首先考虑一般的形式,设n为被划分的正整数,x为划分后最小的整数,如果n有一种划分,那么
结果就是x,如果有两种划分,就是x和x x + 1, 如果有m种划分,就是 x 、x x + 1 、 x x + 1 x + 2 、... 、x x + 1 x + 2 ... x + m - 1
将每一个结果相加得到一个公式(i * x + i * (i - 1) / 2) = n,i为当前划分后相加的正整数个数。
满足条件的划分就是使x为正整数的所有情况。
如上例,当i = 1时,即划分成一个正整数时,x = 15, 当i = 2时, x = 7。
当x = 3时,x = 4, 当x = 4时,4/9,不是正整数,因此,15不可能划分成4个正整数相加。
当x = 5时,x = 1。

    这里还有一个问题,这个i的最大值是多少?不过有一点可以肯定,它一定比n小。我们可以做一个假设,
假设n可以拆成最小值为1的划分,如上例中的1 2 3 4 5。这是n的最大数目的划分。如果不满足这个假设,
那么 i 一定比这个划分中的正整数个数小。因此可以得到这样一个公式i * (i + 1) / 2 <= n,即当i满足
这个公式时n才可能被划分。

综合上述,源程序如下

int  split1( int  n)
{
    
int  i, j, m  =   0 , x, t1, t2;
   
//  在这里i + 1之所以变为i - 1,是因为i * (i - 1) / 2这个式子在下面多次用到,
  
//  为了避免重复计算,因此将这个值计算完后保存在t1中。并且将<= 号变为了<号。
     for (i  =   1 ; (t1  =  i  *  (i  -   1 /   2 <  n; i ++
    {
        t2 
=  (n  -  t1);
        x 
=   t2  /  i;
        
if (x  <=   0 break ;
        
if ((n  -  t1)  %  i  ==   0 )
        {
            printf(
" %d  " , x);
            
for (j  =   1 ; j  <  i; j ++ )
                printf(
" %d  " , x  +  j);
            printf(
" /n " );
            m
++ ;
        }
    }
    
return  m;
}



// 将一个正整数n表示成一系列正整数之和,
  // n = n1 + n2 + ... + nk ( 其中, n1 >= n2 >= ... >= nk , k >= 1 )
  // 正整数n的一个这种表示称为正整数n的一个划分。
  // 正整数n的不同的划分个数称为正整数n的划分数。
  // 求划分数
  // 将最大数n1不大于m的划分个数记作q(n,m)。
  // 递归关系如下:
  // 1、q(n,1) = 1 , n >= 1;
  // 2、q(n,m) = q(n,n) , m >= n;
  // 3、q(n,n) = 1 + q(n,n-1);
  // 4、q(n,m) = q(n,m-1) + q(n-m,m) , n > m > 1;
  
  #include "iostream.h"
  int q( int n , int m )
  {
  if( n < 1 || m < 1 )
   return 0;
  if( n == 1 || m == 1 )
   return 1;
  if( n < m )
   return q( n , n );
  if( n == m )
   return q( n , m - 1 ) + 1;
  return q( n , m - 1 ) + q( n - m , m );
  }
  void main()
  {
  cout<<q(6,6)<<endl;
  }
  
  
  
  
  
  // 求划分
  //
  #include "iostream.h"
  #include "iomanip.h"
  #define max 1024
  void print( int *map , int len )
  {
  static int total = 1;
  cout<<"划分"<<setw(4)<<total++<<" : ";
  for( int i = 0 ; i < len ; i++ )
   cout<<setw(5)<<map[i];
  cout<<endl;
  }
  int p( int n , int m , int *map , int len )
  {
  if( n >= 1 && m == 1 )
  {
  // flag1:
  // 当 m=1 时,只有一种分法,n = 1 + 1 + ...
  // 与 flag2 合作,可以完成这种分解的输出
   map[len] = 1;
   p( n - 1 , m , map , len+1 );
   return 1;
  }
  else if( n == 0 && m == 1 )
  {
  // flag2:
  // 配合 flag1 ,完成对 m=1 划分的处理
   print( map , len );
   return 1;
  }
  else if( n == 1 && m > 1 )
  {
  // flag3:
  // 当 n=1 时,分解已经完成,进行输出处理
   map[len] = n;
   print( map , len + 1 );
   return 1;
  }
  else if( n < m )
  {
  // flag4:
  // 由于所处位置的关系,此时及以下情况中的 m , n 都 > 1
   return p( n , n , map , len );
  }
  else if( n == m )
  {
  // flag5:
  // 这种情况下,map 位赋为 m,则可完成一种划分
   map[len] = m;
   print( map , len + 1 );
  // 继续下种情况的处理
   return p( n , m - 1 , map , len ) + 1;
  }
  else
  {
  // 有两种处理方法
  // 方法一:
  // 当前 map 位赋为 m , 处理 p( n-m , m )
   map[len] = m;
   int s1 = p( n - m , m , map , len + 1 );
  // 方法二:
   int s2 = p( n , m - 1 , map , len );
   return s1 + s2;
  }
  }
  void main()
  {
  int map[max] = { 0 };
  int len = 0;
  cout<<"total="<<p( 6 , 6 , map , len )<<endl;
  }
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值