wfGo 围棋 AI训练 ANN训练

wfGo是作者的大学毕设作品,通过VS2017进行开发,支持AI训练模式。点击【ANN训练】按钮进入训练,使用BP神经网络进行学习。训练数据来自sgf棋谱,每个棋谱的学习节点包含棋盘状态和下一步落子,通过不断调整神经网络参数进行训练。训练完成后,新参数保存于weight.txt。
摘要由CSDN通过智能技术生成

前言

wfGo 是笔者大学毕设作品,这几天有时间把它整理一下。该项目已在github开源,有需要的小伙伴可以看第一篇博客的末尾获取git地址:

https://blog.csdn.net/wf824284257/article/details/104085281

本文介绍了 wfGo的 AI训练模式 。

使用VS2017+打开项目即可。

开始

进入client端的主界面后,点击【ANN训练】 按钮,即可进入AI训练模式。

########### 1

根据下图所示,依次走1234这4步。

########### 2

之后,直接点击下图的 开始训练按钮即可。 点击后,下面【正在分析文件】会显示当前的进度。此时只需要等待完成。

########### 3

########### 4

博弈是人工智能领域的重要研究主题,人工智能技术的发展在很多方面得益于博弈的发展。围棋作为博弈研究的主要内容之一,因其具有搜索空间大和难以建立评价函数的难点,使得传统的搜索方法很难获得令人满意的对弈性能。近年来,基于卷积神经网络的围棋棋步预测方法逐渐成为解决围棋博弈问题的一种有效途径。这是因为,第一,棋步预测方法通过监督学习来预测人类高水平棋手的走棋,该过程并不需要进行深度搜索,因此能够避免围棋分支因子高的问题;第二,棋步预测方法与人类棋手在对弈时的思考方式相一致;第三,由于卷积神经网络能够直接从原始图像中识别出视觉模式,并通过逐层的特征提取来提升分类的准确性,故可对围棋棋局进行有效地评估,从而克服对围棋中的模糊概念建立可计算模型的困难。利用卷积神经网络构建围棋棋步预测模型极大地促进了围棋博弈的发展,但就目前的研究现状来看仍有很大的发展空间。本文针对基于卷积神经网络的围棋棋步预测方法开展了以下三个方面的研究工作:1)对基于卷积神经网络的围棋棋步预测方法进行了综述。首先,简要介绍了围棋博弈的难点,通过对蒙特卡洛树搜索方法的分析,指出围棋棋步预测方法才是解决围棋博弈问题的有效途径;然后,从卷积神经网络的整体结构、各层子结构以及网络的训练三个方面阐述了与围棋棋步预测相关的卷积神经网络基础知识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值