Python3:《机器学习实战》之决策算法(3)预测隐形眼镜类型

Python3:《机器学习实战》之决策树算法(3)预测隐形眼镜类型



前言:

  本博文先介绍在实际应用中如何存储分类器,然后在实际数据上使用决策树分类算法,验证它是否可以正确预测出患者应该使用的隐形眼镜类型。

测试和存储算法

测试算法:使用决策树执行分类

  在执行数据分类时,需要使用决策树以及用于构造决策树的标签向量。然后,程序比较测试数据与决策树上的数值,递归执行该过程知道进入叶子结点;最后将测试数据定义为叶子节点所属的类型。

代码实现:

def classify(inputTree, featLabels, testVec):
    """
    Function:   使用决策树的分类函数

    Args:       inputTree:树信息
                featLabels:标签列表
                testVec:测试数据

    Returns:    classLabel:分类标签
    """ 
    #第一个关键字为第一次划分数据集的类别标签,附带的取值表示子节点的取值
    firstStr = list(inputTree.keys())[0]
    #新的树,相当于脱了一层皮
    secondDict = inputTree[firstStr]
    #将标签字符串转为索引
    featIndex = featLabels.index(firstStr)
    #遍历整棵树
    for key in secondDict.keys():
        #比较testVec变量中的值与树节点的值
        if testVec[featIndex] == key:
            #判断子节点是否为字典类型,进而得知是否到达叶子结点
            if type(secondDict[key]).__name__=='dict':
                #没到达叶子结点,则递归调用classify()
                classLabel = classify(secondDict[key], featLabels, testVec)
            else:
                #到达叶子结点,则分类结果为当前节点的分类标签
                classLabel = secondDict[key]
    #返回分类标签
    return classLabel
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

输出结果:

>>> reload(trees)
<module 'trees' from 'E:\\机器学习实战\\mycode\\Ch03\\trees.py'>
>>> myDat, labels = trees.createDataSet()
>>> labels
['no surfacing', 'flippers']
>>> myTree = treePlotter.retrieveTree(0)
>>> myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
>>> trees.classify(myTree, labels, [1,0])
'no'
>>> trees.classify(myTree, labels, [1,1])
'yes'
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

使用算法:决策树的存储

  构造决策树是很耗时的任务,及时处理很小的数据集。如果使用创建好的决策树解决分类问题,则可以很快完成。因此,为了节省计算时间,我们使用Python模块pickle序列化对象,以便在硬盘上保存和读取字典。

代码实现::

def  storeTree(inputTree, filename):
    """
    Function:   存储决策树

    Args:       inputTree:树信息
                filename:文件名称

    Returns:    无
    """ 
    #导入模块
    import pickle
    #新建文件,一定要加b属性,否则可能报错:
    #TypeError: write() argument must be str, not bytes
    fw = open(filename, 'wb')
    #写入数据
    pickle.dump(inputTree, fw)
    #关闭文件
    fw.close()

def grabTree(filename):
    """
    Function:   读取决策树

    Args:       filename:文件名称

    Returns:    pickle.load(fr):树信息
    """ 
    #导入模块
    import pickle
    #打开文件,写入属性一致,否则可能报错:
    #UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 0: illegal multibyte sequence
    fr = open(filename, 'rb')
    #导出数据
    return pickle.load(fr)

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

输出结果:

>>> reload(trees)

>>> trees.storeTree(myTree, 'classifierStorage.txt')
>>> trees.grabTree('classifierStorage.txt')
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5

  通过上面的代码,我们可以将分类器存储在硬盘上,而不用每次对数据分类时重新学习一遍,这也是决策树的优点之一,而k-近邻算法却无法持久化分类器。

使用决策树预测隐形眼镜类型:

示例:使用决策树预测隐形眼镜类型:

  • 收集数据:提供的文本文件。
  • 准备数据:解析tab键分割的数据行。
  • 分析数据:快速检查数据,确保正确地解析数据内容,使用createPlot()函数绘制最终的树形图。
  • 训练算法:使用前面编写好的createTree()函数。
  • 测试算法:编写测试函数验证决策树科一正确分类给定的数据实例。
  • 使用算法:存储树的数据结构,以便下次使用时无需重新构造树。

  隐形眼镜数据集是非常著名的数据集,它包含很多患者眼部状况的观察条件以及医生推荐的隐形眼镜类型,数据来源于UCI数据库,为了更容易显示数据,书中对数据做了简单的更改,即lenses.txt文件。

>>> fr = open('lenses.txt')
>>> lenses = [inst.strip().split('\t') for inst in fr.readlines()]
>>> lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
>>> import trees
>>> lensesTree = trees.createTree(lenses, lensesLabels)
>>> lensesTree
{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic': {'yes': {'prescript': {'myope': 'hard', 'hyper': {'age': {'pre': 'no lenses', 'young': 'hard', 'presbyopic': 'no lenses'}}}}, 'no': {'age': {'pre': 'soft', 'young': 'soft', 'presbyopic': {'prescript': {'myope': 'no lenses', 'hyper': 'soft'}}}}}}}}
>>> import treePlotter
>>> treePlotter.createPlot(lensesTree)
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

  本渣渣将上述代码包装成函数,方便大家直接调用。

代码实现:

# -*- coding: UTF-8 -*-
"""
Created on Aug 31, 2017
Test on the modules
@author: wordzzzz
"""
import trees
import treePlotter

def main():
    """
    Function:   主函数

    Args:       无

    Returns:    无
    """
    #打开文件
    fr = open('lenses.txt')
    #读取文件信息
    lenses = [inst.strip().split('\t') for inst in fr.readlines()]
    #定义标签
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
    #创建树
    lensesTree = trees.createTree(lenses, lensesLabels)
    #打印树信息
    print(lensesTree)
    #绘制树信息
    treePlotter.createPlot(lensesTree)

if __name__ == "__main__":
    main()
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

输出结果:

E:\机器学习实战\mycode\Ch03>python3 test.py
{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic': {'no': {'age': {'presbyopic': {'prescript': {'myope': 'no lenses', 'hyper': 'soft'}}, 'young': 'soft', 'pre': 'soft'}}, 'yes': {'prescript': {'myope': 'hard', 'hyper': {'age': {'presbyopic': 'no lenses', 'young': 'hard', 'pre': 'no lenses'}}}}}}}}
 
 
  • 1
  • 2

  隐形眼睛的例子表明决策树可能会产生过多的数据集划分,从而产生过度匹配数据集的问题。我们可以通过裁剪决策树,合并相邻的无法产生大量信息增益的叶节点,消除过度匹配问题。淡然还有很多决策树构造算法,最流行的是C4.5和CART。

系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~

完的汪(∪。∪)。。。zzz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值