本文为转载,原博客地址:http://blog.csdn.net/sgzqc/article/details/52593262
前段时间参加了虹软的校招笔试,遇到了一道算法题,现摘录下来做个备份。
题目: 给定一个mXn的矩阵,如下图所示,里面所有元素都非负,试找出一条从左上角到右下角的一条路径,要求路径上的数字之和最小。注:在某一个位置只有两种选择,向下或者向右。
1 | 4 | 8 | 2 | 9 |
1 | 4 | 6 | 7 | 8 |
1 | 1 | 1 | 1 | 1 |
请给出你的解题思路,并完成int min_sum_path(int *mat, int row, int col)。其中函数返回值为路径和的最小值,最后给出你算法的时间复杂度。
思路一: 可直接用回溯算法,每次从当前位置有2种选择,要么向右,要么向下,示例代码如下:
- //===============================================================
- //Author :
- // Andrew
- //Date :
- // 2016/09/20 10:32:32
- //Mail :
- // andrewzhao1020@gmail.com
- //===============================================================
- #include <iostream>
- #include<string>
- #include<vector>
- using namespace std;
- //存放位置
- int POSX[10];
- int POSY[10];
- void DFS(int depth, int i, int j, int *mat, int m, int n, int &cursum, int &minsum)
- {
- //记录位置
- POSX[depth] = i;
- POSY[depth] = j;
- //迭代结束
- if (depth == n + m - 1)
- {
- return;
- }
- //更新最小值
- if (i == m - 1 && j == n - 1 && cursum < minsum)
- minsum = cursum;
- //右
- if (i<m && j + 1<n)
- {
- cursum += mat[i*n + (j + 1)];
- DFS(depth + 1, i, j + 1, mat, m, n, cursum, minsum);
- cursum -= mat[i*n + (j + 1)];
- }
- //下
- if (i + 1<m && j<n)
- {
- cursum += mat[(i + 1)*n + j];
- DFS(depth + 1, i + 1, j, mat, m, n, cursum, minsum);
- cursum -= mat[(i + 1)*n + j];
- }
- }
- int min_sum_path(int *mat, int row, int col)
- {
- int cursum = mat[0];
- int minsum = 10000;
- //求最值
- DFS(0, 0, 0, mat, row, col, cursum, minsum);
- return minsum;
- }
- int main()
- {
- int mat[] = { 1, 4, 8, 2, 9, 1, 4, 6, 7, 8, 1, 1, 1, 1, 1 };
- int row = 3;
- int col = 5;
- int answer = min_sum_path(mat, row, col);
- cout << "answer = " << answer << endl;
- //输出位置
- for (int i = 0; i<row + col - 1; i++)
- {
- cout << mat[POSX[i]* col + POSY[i]] << " ";
- }
- cout << endl;
- return 0;
- }
思路二: 动态规划,将该一维数组视为二维数组,由于每个位置只能往右或者往下走,不妨记F(i,j)表示从起点到位置(i,j)处的路径和的最小值,则状态转移方程为:
F(i+1,j+1) = min(F(i,j+1), F(i+1,j)) + mat[i+1][j+1] 其中 0< i + 1<row 0< j+1<col
初始条件为,对于第一行的位置,因为只能向右到达 ,所以 F(0,j) = sum(0,j) j=0...col; 对于第一列的位置,只能从起点向下到达,所以 F(i,0) = sum(i,0) i = 0...row
据此,可得代码如下:
- //===============================================================
- //Author :
- // Andrew
- //Date :
- // 2016/09/20 10:32:32
- //Mail :
- // andrewzhao1020@gmail.com
- //===============================================================
- #include <iostream>
- #include<string>
- #include<vector>
- #include<algorithm>
- using namespace std;
- int min_sum_path(int *mat, int row, int col)
- {
- int i, j;
- int dp[100][100] = { 0 };
- dp[0][0] = mat[0];
- //第一行
- for ( j = 1; j < col; j++)
- dp[0][j] = dp[0][j - 1] + mat[j];
- //第一列
- for ( i = 1; i < row; i++)
- dp[i][0] = dp[i - 1][0] + mat[i*col];
- //其他位置
- for ( i = 1; i < row;i++)
- for (j = 1; j < col; j++)
- dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + mat[i*col + j];
- return dp[row-1][col-1];
- }
- int main()
- {
- int mat[] = { 1, 4, 8, 2, 9, 1, 4, 6, 7, 8, 1, 1, 1, 1, 1 };
- int row = 3;
- int col = 5;
- int answer = min_sum_path(mat, row, col);
- cout << "answer = " << answer << endl;
- return 0;
- }