2017虹软校招算法题

本文为转载,原博客地址:http://blog.csdn.net/sgzqc/article/details/52593262

前段时间参加了虹软的校招笔试,遇到了一道算法题,现摘录下来做个备份。

题目: 给定一个mXn的矩阵,如下图所示,里面所有元素都非负,试找出一条从左上角到右下角的一条路径,要求路径上的数字之和最小。注:在某一个位置只有两种选择,向下或者向右。

14829
14678
11111
在以上矩阵中,其中数字之和最小的路径为1-1-1-1-1-1-1,其最小和为7.

请给出你的解题思路,并完成int min_sum_path(int *mat, int row, int col)。其中函数返回值为路径和的最小值,最后给出你算法的时间复杂度。


思路一: 可直接用回溯算法,每次从当前位置有2种选择,要么向右,要么向下,示例代码如下:

[cpp]  view plain  copy
  1. //===============================================================  
  2. //Author :   
  3. //                    Andrew  
  4. //Date   :  
  5. //                2016/09/20 10:32:32  
  6. //Mail   :  
  7. //               andrewzhao1020@gmail.com  
  8. //===============================================================  
  9.   
  10. #include <iostream>  
  11. #include<string>  
  12. #include<vector>  
  13. using namespace std;  
  14.   
  15. //存放位置  
  16. int POSX[10];  
  17. int POSY[10];  
  18.   
  19. void DFS(int depth, int i, int j, int *mat, int m, int n, int &cursum, int &minsum)  
  20. {  
  21.     //记录位置  
  22.     POSX[depth] = i;  
  23.     POSY[depth] = j;  
  24.     //迭代结束  
  25.     if (depth == n + m - 1)  
  26.     {  
  27.         return;  
  28.     }  
  29.     //更新最小值  
  30.     if (i == m - 1 && j == n - 1 && cursum < minsum)  
  31.         minsum = cursum;  
  32.     //右  
  33.     if (i<m && j + 1<n)  
  34.     {  
  35.         cursum += mat[i*n + (j + 1)];  
  36.         DFS(depth + 1, i, j + 1, mat, m, n, cursum, minsum);  
  37.         cursum -= mat[i*n + (j + 1)];  
  38.     }  
  39.     //下  
  40.     if (i + 1<m && j<n)  
  41.     {  
  42.         cursum += mat[(i + 1)*n + j];  
  43.         DFS(depth + 1, i + 1, j, mat, m, n, cursum, minsum);  
  44.         cursum -= mat[(i + 1)*n + j];  
  45.     }  
  46.   
  47. }  
  48.   
  49. int min_sum_path(int *mat, int row, int col)  
  50. {  
  51.     int cursum = mat[0];  
  52.     int minsum = 10000;  
  53.     //求最值  
  54.     DFS(0, 0, 0, mat, row, col, cursum, minsum);  
  55.   
  56.     return minsum;  
  57. }  
  58.   
  59. int main()  
  60. {  
  61.     int mat[] = { 1, 4, 8, 2, 9, 1, 4, 6, 7, 8, 1, 1, 1, 1, 1 };  
  62.     int row = 3;  
  63.     int col = 5;  
  64.       
  65.     int answer = min_sum_path(mat,  row,  col);  
  66.     cout << "answer = " << answer << endl;  
  67.       
  68.     //输出位置  
  69.     for (int i = 0; i<row + col - 1; i++)  
  70.     {  
  71.         cout << mat[POSX[i]* col + POSY[i]] << " ";  
  72.     }  
  73.     cout << endl;  
  74.   
  75.     return 0;  
  76. }  

思路二: 动态规划,将该一维数组视为二维数组,由于每个位置只能往右或者往下走,不妨记F(i,j)表示从起点到位置(i,j)处的路径和的最小值,则状态转移方程为:

F(i+1,j+1) = min(F(i,j+1), F(i+1,j)) + mat[i+1][j+1]   其中 0< i + 1<row   0< j+1<col

初始条件为,对于第一行的位置,因为只能向右到达 ,所以 F(0,j) = sum(0,j)    j=0...col; 对于第一列的位置,只能从起点向下到达,所以 F(i,0) = sum(i,0)  i = 0...row

据此,可得代码如下:

[cpp]  view plain  copy
  1. //===============================================================  
  2. //Author :   
  3. //                    Andrew  
  4. //Date   :  
  5. //                2016/09/20 10:32:32  
  6. //Mail   :  
  7. //               andrewzhao1020@gmail.com  
  8. //===============================================================  
  9.   
  10. #include <iostream>  
  11. #include<string>  
  12. #include<vector>  
  13. #include<algorithm>  
  14. using namespace std;  
  15.   
  16. int min_sum_path(int *mat, int row, int col)  
  17. {  
  18.     int i, j;  
  19.     int dp[100][100] = { 0 };  
  20.     dp[0][0] = mat[0];  
  21.     //第一行  
  22.     for ( j = 1; j < col; j++)  
  23.         dp[0][j] = dp[0][j - 1] + mat[j];  
  24.     //第一列  
  25.     for ( i = 1; i < row; i++)  
  26.         dp[i][0] = dp[i - 1][0] + mat[i*col];  
  27.     //其他位置  
  28.     for ( i = 1; i < row;i++)  
  29.         for (j = 1; j < col; j++)  
  30.             dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + mat[i*col + j];  
  31.     return dp[row-1][col-1];  
  32. }  
  33. int main()  
  34. {  
  35.     int mat[] = { 1, 4, 8, 2, 9, 1, 4, 6, 7, 8, 1, 1, 1, 1, 1 };  
  36.     int row = 3;  
  37.     int col = 5;  
  38.       
  39.     int answer = min_sum_path(mat,  row,  col);  
  40.     cout << "answer = " << answer << endl;  
  41.       
  42.     return 0;  
  43. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值