WHACKW的专栏

测试相关,尽量做到比开发与运维还要牛

sklearn上使用集成算法

集成方法即将不同的分类器组合起来,使用集成方法会有多种形式:不同算法的集成、同一算法在不同设置下的集成、数据集不同部分分配给不同分类器之后的集成。sklearn中封装了Ensemble methods.AdaBoost和bagging方法。他们都是基于同一种分类器多个不同实例的计算方法.1.boo...

2017-09-13 19:32:11

阅读数:209

评论数:0

基于Scikit-Learn的五个文本分类案例研究

Scikit 是一个开源的 Python 机器学习库。主要涵盖了分类、回归分析、聚类等算法,具体包括支持向量机、随机森林、梯度提升(gradient boosting)、K-means 和 DBSCAN 等算法,同时也集成了 Python 的数据科学包 NumPy 和 SciPy。下面是5个利...

2017-09-12 21:04:57

阅读数:175

评论数:0

]scikit-learn进行机器学习

http://www.cnblogs.com/taceywong/p/4568806.html http://www.cnblogs.com/taceywong/p/4570155.html

2017-09-12 21:02:10

阅读数:160

评论数:0

python情感词分析

http://www.360doc.com/content/16/0725/19/15165994_578332920.shtml

2017-09-12 19:57:41

阅读数:220

评论数:0

sklearn参数优化方法

学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参数无法从数据中估计,只能靠人的经验进行指定,后一类参数就叫超参数 比如,支持向量机里的C,Kernel,gama,朴素贝叶斯里的alpha等,在学习其模型的设计中,我们要搜索超参数空间为学习器模型找到最合理的超参数,可以...

2017-09-12 19:29:55

阅读数:340

评论数:0

sklearn分类器

这几天在看 sklearn 的文档,发现他的分类器有很多,这里做一些简略的记录。 大致可以将这些分类器分成两类: 1)单一分类器,2)集成分类器   一、单一分类器 下面这个例子对一些单一分类器效果做了比较 from sklearn.cross_validatio...

2017-09-12 19:07:43

阅读数:308

评论数:0

sklearn做单机特征工程

使用sklearn做单机特征工程 目录 1 特征工程是什么? 2 数据预处理   2.1 无量纲化     2.1.1 标准化     2.1.2 区间缩放法     2.1.3 标准化与归一化的区别   2.2 对定量特征二值化   2.3 对定性特征哑编码   2.4 ...

2017-09-12 15:51:17

阅读数:131

评论数:0

sklearn进行数据挖掘

1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤   数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。使用sklearn工具可以方便地进行特征工程和模型训练工作,在《使用sklearn做单机特征工程》中,我们最后留下了一些疑问:特征处理类都有三个方法f...

2017-09-12 15:31:06

阅读数:230

评论数:0

支持向量机通俗导论(理解SVM的三层境界)

前言     动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不...

2017-08-11 15:28:20

阅读数:225

评论数:0

用Pandas完成Excel中常见的任务

本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务。有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要。作为额外的福利,我将会进行一些模糊字符串匹配,以此来展示一些小花样,以及展示pandas是如何利用完整的Python模块系统去做一些...

2017-08-11 14:32:48

阅读数:243

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭