WHACKW的专栏

测试相关,尽量做到比开发与运维还要牛

opencv常用函数入参

img = cv2.imread('messi5.jpg',0) three flags, you can simply pass integers 1, 0 or -1 respectively img NumPy.ndarray对象 rows,cols = img.shape只有flag...

2016-11-29 15:53:24

阅读数:260

评论数:0

Python下opencv图像的几何变换

二维与三维图像的几何变换在计算机图形学上有重要的应用,包括现在的许多图像界面的切换、二维与三维游戏画面控制等等都涉及到图像几何变换,就比如说在三维游戏中,控制角色三维移动的时候,画面是要跟着移动的,那么怎么移动,怎么让上一时刻的画面移动到这一时刻,这都是根据了你的移动量,然后找到三维坐标之间的对应...

2016-11-29 15:51:53

阅读数:441

评论数:0

SIFT/SURF算法的深入剖析——谈SIFT的精妙与不足

SURF算法是SIFT算法的加速版,OpenCV的SURF算法在适中的条件下完成两幅图像中物体的匹配基本实现了实时处理,其快速的基础实际上只有一个——积分图像haar求导,对于它们其他方面的不同可以参考本blog的另外一篇关于SIFT的文章。     不论科研还是应用上都希望可以和人类的视觉一样...

2016-11-29 11:31:20

阅读数:197

评论数:0

SURF与SIFT比较

http://blog.163.com/sn404417391@126/blog/static/126688605201111623714283/ 共同点: SIFT/SURF为了实现不同图像中相同场景的匹配,主要包括三个步骤: 1、尺度空间的建立; 2、特征点的提取; 3、利用特...

2016-11-29 11:16:50

阅读数:204

评论数:0

SIFT特征提取分析

SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良...

2016-11-29 09:49:39

阅读数:284

评论数:0

通俗易懂地解释卷积

作者:张俊博 链接:https://www.zhihu.com/question/22298352/answer/34267457 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 不推荐用“反转/翻转/反褶/对称”等解释卷积。好好的信号为什么要翻转?导致学生难以理解卷积的物理意...

2016-11-29 09:47:03

阅读数:281

评论数:0

SIFT算法详解

尺度不变特征变换匹配算法详解 Scale Invariant Feature Transform(SIFT) 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。 1、SIFT综述 尺度不变特征转换(Scale-invariant feature tr...

2016-11-29 09:45:11

阅读数:304

评论数:0

模板匹配(Match Template)

作者:王先荣 前言     模板匹配是在图像中寻找目标的方法之一。Come On, Boy.我们一起来看看模板匹配到底是怎么回事。   模板匹配的工作方式     模板匹配的工作方式跟直方图的反向投影基本一样,大致过程是这样的:通过在输入图像上滑动图像块对实际的图像块和输...

2016-11-24 10:56:04

阅读数:758

评论数:0

OpenCV成长之路(4):图像直方图

一、图像直方图的概念 图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。 图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。在实际工程中,图像直...

2016-11-24 10:16:37

阅读数:373

评论数:0

OpenCV成长之路(10):视频的处理

视频中包含的信息量要远远大于图片,对视频的处理分析也越来越成为计算机视觉的主流,而本质上视频是由一帧帧的图像组成,所以视频处理最终还是要归结于图像处理,但在视频处理中,有更多的时间维的信息可以利用。本文主要介绍OpenCV在处理视频时的一些基本函数。 一、视频帧的读取 OpenCV为视频的读入...

2016-11-23 15:52:17

阅读数:177

评论数:0

OpenCV成长之路(8):直线、轮廓的提取与描述

基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条、轮廓、块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以及做一些简单的基础应用。 一、Canny检测轮廓 在上一篇文章中有提到sobel边缘检测,并重写了soble的C...

2016-11-23 15:50:23

阅读数:218

评论数:0

OpenCV成长之路(7):图像滤波

滤波实际上是信号处理里的一个概念,而图像本身也可以看成是一个二维的信号。其中像素点灰度值的高低代表信号的强弱。 高频:图像中灰度变化剧烈的点。 低频:图像中平坦的,灰度变化不大的点。 根据图像的高频与低频的特征,我们可以设计相应的高通与低通滤波器,高通滤波可以检测图像中尖锐、变化...

2016-11-23 15:49:09

阅读数:215

评论数:0

OpenCV成长之路(6):数学形态学基本操作及其应用

数学形态学实际上可以理解为一种滤波行为,所以很多地方称它为形态学滤波。有了个这概念,我们就能更好的理解它。我们滤波中用的滤波器(kernel)在这里被称为结构元素,结构元素往往是由一个特殊的形状构成,如:线条、矩形、圆、菱形等。我们把结构元素的中心(Anchor Point)与图像上像素点对齐,然...

2016-11-23 15:48:08

阅读数:168

评论数:0

opencv-阈值化处理

原理摘自:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/threshold/threshold.html 本节简介: OpenCV中的阈值(threshold)函数:  threshold...

2016-11-23 15:46:19

阅读数:202

评论数:0

adb获取无法IP

adb shell getprop dhcp.wlan0.ipaddress

2016-11-15 17:52:55

阅读数:279

评论数:0

adb判断是否锁屏

adb shell dumpsys window policy|grep mShowingLockscreen

2016-11-15 17:09:59

阅读数:1226

评论数:0

adb命令判断键盘显示

adb shell dumpsys input_method |grep mInputShown=true

2016-11-15 17:01:41

阅读数:709

评论数:0

mac安装cv2(即opencv)

1. 去 http://opencv.org 下载最新版OpenCV for Linux/Mac源文件,目前版本是2.4.3。下载后解压。 2. 去 http://www.cmake.org 下载最新版cmake,.dmg文件,目前版本是2.8.10.2。下载后安装。(如果有brew命令,可以b...

2016-11-15 16:52:22

阅读数:3327

评论数:1

adb判断屏幕是否poweroff

adb shell dumpsys window policy|grep mScreenOnFully

2016-11-15 16:35:52

阅读数:1282

评论数:0

键盘监控

键盘监控 键盘监控,顾名思义是在应用软件在运行时,用户在设备上的一举一动都将被详细记录下来,更多的实在使用者毫无觉察的情况下 将屏幕内容以图片的形式、按键内容以文本文档的形式保存在指定的文件夹或发送到指定的邮箱。键盘监控,包括物理按键与软键盘的监控,通常监控的事件有:点 击,长按,滑动等...

2016-11-04 18:33:16

阅读数:212

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭