PCA理论与传统PCA图像融合

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/what_lei/article/details/48999673
最近在做图像融合,用到PCA在此整理一下;
  • PCA的应用范围
  • PCA最大方差与最小误差推导
  • 奇异值与PCA
  • pca图像融合 
1.PCA应用范围
压缩数据;可视化,高维数据无法可视化,降到2维或3维便于可视化;降低overfitting,用高维数据进行supervised learning,模型复杂度比较高,容易过拟合,通过PCA降维达到防止过拟合的作用;去噪音,比如对于脸部识别,100×100的pixel,就是10000特征,通过PCA降维可以找到主成分特征;异常检测,通过PCA可以找到由k个主成分组成的超平面,如果新的数据离该超平面很远,就说明可能是异常数据。请参考这 http://www.cnblogs.com/fxjwind/p/3910377.html

2.PCA最大方差与最小误差推导

1>PCA最大方差推导,与具体实例请参照这http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html

3.奇异值与PCA


4.传统pca融合步骤与示意图
PCA 算法的主要步骤如下:
(1) 对参加融合的源图像进行配准
(2) 计算多光谱图像的主成分变换矩阵的特征值与对应的特征向量
(3) 将特征值按从大到小的顺序排序,相应的特征向量也要跟着变动,将最终的结果记为
(4) 各主分量按如下方式计算:
                                            
(5) 将全色图像和第一主分量图像进行直方图匹配,然后将第一主分量用全色图像替换;
(6) 做逆主分量变换,得到融合图像PCA 变换融合法的主要优点是:融合后的图像光谱特性保持好,尤其在波段数较多的情况下。
具体示意图:

展开阅读全文

没有更多推荐了,返回首页