数学导数 应用案例 生产成本利润优化

案例1

某服装工厂在生产服装的过程中,为了满足不同的市场需求,将所生产服装按照相关质量标准分为12个档次标准。例如,质量标准最低的服装产品的生产时间最短,每一件服装产品本身可以获得5元的利润。而高一个标准的服装产品,在生产中每件的利润则可以达到15元,但是在相同时间内的生产量相比低档次服装来说会减少5件。结合实际环境条件,假设在一定时间内,最低标准服装的生产数量为100件,则结合实际情况回答什么情况下总利润可以实现最大化?其中可以获得多少利润?
  解答:对于这些最大化问题的求解上,我们可以利用求导发来对函数的最值进行分析,从而解决问题。在实际应用中要关注对定义域的严格限制。假设生产到第n种标准衬衫时可以获得最大的利润为m。根据题目给的条件进行分析,可以得出函数m=[10+5(n-1)][100-5(n-1)]=25(n+1)(21-n)。对于这一函数进行求导,可以得出m’=25(21-n)-25(n+1)=50(10-n),m’=50(10-n)=0。通过求解,可以得到n=10,在1~12的区间内,极值点只有10一个点,因此可以将其视为最值点,进而得出结果:在生产10标准的衣服可以获得最大利润3025元。这种针对实际问题采取优化解决方案,可采取函数、指数的分析模式,应用导数的过程中可以更加有效地分析相关最大利润方面问题,进而解决问题。


案例2

某矿厂在日常开采和生产的过程中,每月的产量可以达到x吨,每吨矿的价格为n元,二者之间的关系通过公式表示可以表示为:n=24200-1/5x2,并且开采x吨矿的成本为m=50000+200x。已知上述条件,问:为了更好地提高利润,每个月的产量应该定位为多少?其利润最大值为多少?
  解答:根据上述题目中所叙述的条件,可以利用函数关系式来解答,并结合导数最值的方式进行求解。f(x)=(24200-1/5x2)×(50000+200x)=-1/5x2+24000x-50000。x为产量,其应该具备x≥0的条件。通过求解可以得出,x=200。在函数f(x)中,极值点有200和-200两个点,由于x≥0,则去掉x=200。在x=200时,将f(200)代入计算可得结果利润为315万元。因此,将月产量定位200吨时,可以获得最大利润315万元。这种解题方式,通过对极值点进行计算,结合定义区间的条件来进行筛选和选择,进而达到求最值的目的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值