Java 基于Spring AI RAG组件做AI智能问答_rag检索增强_AI智能问答

基于RAG技术构建高效Java智能问答客服机器人

基于RAG(Retrieval-Augmented Generation)技术,可以构建高效的Java智能问答客服机器人。首先,通过向量化处理将Word格式的问答QA文档转换为机器可理解的形式,并存储于VectorStore中。在用户发起查询时,系统利用DocumentRetriever检索与问题最相关的文档片段,借助DashScopeApi等底层API的支持,这些信息会被送入预训练的大模型进行理解和生成响应。这样,即使面对复杂的咨询场景,Java编写的智能客服也能根据已有知识库准确、迅速地给出答案。整个流程不仅强化了对非结构化数据的有效利用,还显著提升了客户服务体验的质量。

本文采用spring ai alibaba 调用通义QWen 来实现。 QWen有100万免费Token额度,可以快速实现。同时,因为QWen也是个开源的模型,我们可以自己搭建模型来实现免费使用

检索增强生成:结合私有知识库与大模型提升文本准确性

检索增强生成 (RAG) 是一种结合了私有知识库和大型语言模型 (LLM) 的技术,用于提高文本生成的准确性和相关性。它通过从私有知识库中检索相关信息,并将其提供给LLM以生成更精确的回答,从而有效解决了大模型在回答问题时可能出现的幻觉以及对企业自有数据掌握不足的问题。这种方法确保了生成的内容更加贴合实际需求和具体情况,增强了答案的可靠性和实用性。

RAG的核心步骤

在RAG(Retrieval-Augmented Generation)的主要流程中,可以分为两个主要部分:索引构建流程和使用流程。这些流程确保了数据能够高效地被检索和生成。

索引构建流程

数据准备流程包括从各种数据源收集原始数据、进行数据清洗以及将数据转换为适合向量化处理的格式。这一过程旨在保证输入数据的质量和一致性,从而提高后续步骤的效率和准确性。
接下来是向量化模块,该模块通过特征提取技术,如利用预训练的语言模型(例如BERT、GPT等),将清洗和转换后的文本转换成向量表示形式。这一步骤对于捕捉文本语义至关重要,使得机器能够理解并比较不同文档之间的相似性。
最后,在数据存储/索引构建阶段,向量化后的数据被存入数据库或文件系统,并且为了加快搜索速度,会基于这些数据创建索引。常见的索引类型有倒排索引、B树等,它们允许快速定位到与查询最相关的项目。

使用流程

当用户提出一个问题时,首先由查询意图识别/改写/反问模块来解析这个自然语言问题,尝试理解其背后的真正意图,并可能对问题进行重新表述以更好地匹配系统中的信息。此步骤有时还包括发出反问以获得更清晰的需求描述。
然后,检索模块依据改写后的问题从已建立的索引中寻找最相关的文档或片段。这通常涉及到复杂的搜索算法,以确保找到的信息不仅相关而且高质量。
随后,重排模块对检索结果按照一定的标准排序,比如内容的相关程度或者来源的可信度,目的是让最有用的答案出现在前列。
接着,输出接入阶段负责将排名靠前的结果整合成易于理解的形式,并最终形成一个完整的答案供用户查看。
最后,通过返回结果环节,用户可以看到生成的回答,并有机会提供反馈,这对于持续改进系统的性能非常关键。

Spring AI Alibaba:为阿里云模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值