Just do it !

记录生活和学习的点滴

机器学习实战笔记(四)Logistic回归

Logistic回归 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合过程就称作回归。利用Logistic回归进行分类的主要思想就是:根据现有的数据对分类边界线建立回归公式,以此进行分类。 Logistic回归的特点 优点:计算代价不高,易...

2018-05-28 17:20:01

阅读数:68

评论数:0

机器学习实战笔记(三)朴素贝叶斯

朴素贝叶斯 朴素贝叶斯是一种基于贝叶斯决策理论的分类方法。 我们用p1(x,y)表示数据点(x,y)属于类别1的概率,用p2(x,y)表示数据点(x,y)属于类别2的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别: 如果 p1(x,y) &gt...

2018-05-22 17:42:13

阅读数:84

评论数:0

机器学习实战笔记(二)决策树

决策树 决策树是一种十分常用的分类方法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy=系统的凌乱程度,使用算法ID3,C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。...

2018-05-03 22:57:20

阅读数:61

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭