引言
随着数字经济的蓬勃发展,各领域的数据量急剧增长,数据处理与分析已超越了传统信息管理的范畴,转型为对庞大数据集的综合处理。鉴于大数据技术尚处于快速成长期,专业人才的短缺问题日益显著,高职院校在相关人才培养上的探索尚显稚嫩,培养体系还需完善,以更好地满足市场需求,优化大数据技术专业的人才培养策略。

一、大数据行业发展现状分析
(一)大数据行业的发展
数据作为新时代的关键生产要素,其价值挖掘成为各界瞩目的焦点。数据整合与应用正深刻改变着各行业的面貌,从全球视野到国内市场,从政府机构到企业界,均高度重视大数据的研究与应用,旨在解锁数据中隐藏的经济潜力。我国大数据产业正以前所未有的速度增长,预计到2022年,相关基础设施建设投资将突破万亿元大关。区域发展上,华东与华北地区凭借领先优势,占据了我国大数据市场的主要份额。在创新方面,企业与高职院校作为核心力量,特别是在2019年,共同贡献了接近全部新增专利的九成七,其中企业作为大数据产业的主体,发挥了关键作用。
(二)人才需求的多元化与专业化
大数据技术的广泛应用涉及众多领域,如通信、医疗、互联网、教育、金融及工业等,这些领域对具备大数据技能的专业人才需求迫切。从业者不仅需要掌握领域内的基础知识,还需具备开发新算法的能力以应对海量数据处理挑战,并适应数据格式的不断变化,有效提取与分析信息。为回应这一需求,高职院校与企业正携手加大人才培养力度,着重培养复合型、应用型、技能型及跨行业综合能力的人才,已有超四分之一的高职院校开设了相关专业。
(三)人才供给的紧迫性
尽管我国大数据技术发展迅猛,但专业人才供给不足的问题仍然突出。这一领域要求从业者掌握数据统计、采集、可视化、存储及算法设计等全方位技能。当前,许多从业者原有的知识体系难以全面覆盖大数据技术的要求,人才短缺现象在部分区域和行业中尤为明显。人才主要集中在上海、深圳等一线城市及通信、互联网、金融等少数领域,而像天津、大连等城市及农业、制造业等其他产业则面临严重的人才缺口,与日益增长的需求形成鲜明对比。

二、高职院校大数据技术专业面临的挑战
(一)实验资源匮乏与实验环境限制
在大数据技术的教育领域,高效且准确的数据处理依赖于高性能的计算机设备和先进的云平台支持。然而,当前众多高职院校普遍面临实验资源匮乏的困境,实验环境简陋,设备陈旧,且实验系统缺乏系统性规划。这些问题直接限制了实验器材在高速数据处理中的应用,严重制约了实践教学活动的有效开展。鉴于企业日益重视应聘者的实践能力,高职院校在培养学生实践动手能力方面的不足,无疑成为了学生就业竞争力的一大短板。
(二)师资队伍建设的不足
大数据技术的快速发展和高度应用性,要求教育者不仅具备扎实的理论基础,还需注重培养学生的应用技能、抽象思维、创新思维及整合能力。然而,当前高职院校中大数据技术专业的教师队伍往往由计算机或数学背景的教师兼任,其教学方法和内容难以完全适应大数据技术的专业需求。这种师资结构不仅限制了教学质量,还因教师时间和精力的分散,难以持续更新专业知识,紧跟技术发展步伐,从而影响了对学生专业素养和创新能力的培养,阻碍了教学效果的提升。
(三)生源素质的多样性挑战
大数据技术专业对学生的综合素质要求较高,但高职院校的招生形式多样,包括注册招生、统招、单招等,导致生源水平参差不齐。随着信息技术的飞速发展,大数据领域对人才的创新创造能力、实践操作能力以及专业素养提出了更高要求。然而,当前教育体系下培养的学生往往难以全面满足这些需求,特别是在面对生源素质差异较大的情况下,高职院校大数据技术专业的教学工作面临着巨大的挑战。如何因材施教,提升整体教学质量,成为亟待解决的问题。
三、高职院校大数据技术专业人才培养策略
(一)利用在线平台优化教学方法
随着信息技术的发展,教学方式变得更加多样化和灵活。在线平台,尤其是云课堂,已成为广泛采用的教学工具之一。唯众的云课堂包括大数据教学云平台和大数据项目实训平台,可以同时满足教学和实训的教学要求。
大数据教学云平台是一个开放式的课程平台,除了唯众的课程体系之外,老师可自主开发在线课程,支持Word、PPT、PDF、视频等常见课件直接转换成在线课程,从而让老师很方便的将专业基础课程迁移到平台上,便于构建完整的大数据、云计算、人工智能专业课程体系。平台内置丰富的教学实训资源,将教学与实训集合起来,依托平台打造前沿的综合一站式实践基地。

大数据教学云平台
大数据项目实训平台集成虚拟化模版功能,内置Hadoop、Spark、TensorFlow、Caffe等主流的大数据、云计算和人工智能学习开发环境,可通过模版快速批量地为学生准备好实训环境。支持多门大数据课程同时开展实训,平台可按课程自动准备各个课程所需虚拟机,学生登录系统后可直接开展实训。

大数据项目实训平台
大数据项目实训平台可支撑学校开展实训周、小学期、综合课程设计等形式的项目实训教学活动,支持小组分工协作,可为每个项目小组按需分配一套虚拟服务器集群,集成Hadoop、HDFS、HBase、Hive、Spark等主流的大数据环境,可支撑多个大数据项目实训题目同时开展。

大数据实训平台
(二)通过内外结合提升教师素质
优秀的教师团队对于培养高质量的大数据技术专业人才至关重要。为了满足专业发展的需求,高职院校需要结合内部培养和外部引进两种方式来建设教师队伍。一方面,要强化“双师型”教师的培养,定期安排教师参与企业实践,学习最新的专业技术,了解行业发展趋势和市场需求,以便为学生提供更实际、有价值的指导。在培训过程中,除了专业技能和实操训练,还应重视教师教学方法和理念的更新,以适应大数据技术专业的特点,进行有效的知识传授和思维训练。同时,应确保专业科研团队在学历、专业背景和年龄结构上的合理性,以培养具有扎实专业技能、科研能力和理论基础的教师团队。另一方面,除了教师的企业实践,还可以与企业合作,邀请在职工程师担任兼职教师,以增强学校的教育资源。
(三)完善大数据专业人才培育框架
由于大数据技术作为新兴领域的特性,当前的教育培养体系尚存诸多待完善之处。首要挑战在于培养方向与内容尚未形成统一标准,加之跨学科知识融合教育的不足,限制了学生综合能力的拓展。此外,高职院校往往沿用本科层次的理论导向课程体系,忽视了对学生实践技能的有效培养,课程衔接与学时分配亦显不合理,难以直接对接企业实际需求。
为构建坚实的知识基础,我们应强化基础学科的教学,如融入“归纳”与“统计”等基础思维训练,为学生后续深入学习奠定良好基础。同时,需精心设计专业课程体系,确保各专业能力如数据挖掘、统计分析等得到针对性的培养,课程安排需紧跟行业动态,适时调整并优化学习路径。教学内容应强化实践与应用导向,鼓励学生创新创业,以培养适应时代与行业变迁的大数据技术人才。
(四)深化与大数据企业的战略合作
为推动高职院校大数据技术教育的发展,加强校企合作显得尤为重要。通过深度融入地方产业,实现教育与经济的无缝对接,服务于区域经济的转型升级。校企合作不仅限于“双师型”教师的培养,还应探索企业专家进校园、兼职授课的新模式,以增强教学的实战性。同时,实施订单式人才培养,依据企业需求定制课程与实践项目,为学生提供更多真实工作环境的实践机会,提升就业对口率。
由于高职院校在资源方面有局限性,特别是在实验室设备更新方面,所以与企业的合作就显得尤为关键。企业能够提供先进的设备、资金及市场洞察,助力学校实验室建设紧跟技术前沿。此外,在管理机制上,借鉴企业的先进经验,优化学校的管理流程,确保实践教学环境更加贴近行业实际,从而更有效地提升学生的实践能力。
(五)多样化课堂教学方法
在大数据技术专业的教学过程中,可以灵活运用多种教学方法,包括但不限于角色扮演法、任务驱动教学法、演示法、项目教学法、讲授法、讨论法以及分组教学法。这些方法的选择可以根据具体的课程内容和学生的学习情况进行调整。例如,在《Java程序设计》《网页设计》《程序设计》等课程中,可以采用项目教学法,将抽象的概念嵌入具体的项目实践中,这样不仅有助于理论知识向实践技能的转化,还能激发学生的学习兴趣。
分组教学法可以通过按学生的学习情况、兴趣爱好等进行分组,然后以小组合作的形式进行授课。特别是在项目实训阶段,这种方式能让学生在团队协作中完成项目,提供更多的交流与自主探索的机会。任务驱动教学法则需要将教学内容重新组织,整合进一系列的任务中,进行有条理的教学。而角色扮演教学法则常用于综合项目的实训,让学生扮演诸如数据开发工程师、数据采集工程师等角色,以加深他们对实际生产流程的理解。
(六)优化教学评价体系
为了确保大数据技术专业学生能够达到既定的培养目标,拥有全面的专业技能,有必要完善教学评价体系。该体系主要包括以下三个方面:
在课程考核中,应该将期末考核、平时表现考核和阶段性考核相结合,采用过程性评价的方法。日常成绩的考核可以利用网络平台辅助教学,记录学生的在线测验、任务完成情况、课堂笔记、课外拓展训练、问题讨论及课后答疑等活动,并将其纳入平时成绩统计。期末考试则应包括理论知识和实践技能两个部分的评估。
对于专业能力的考核,则可以在课程中设置综合技能实训项目,如大数据平台运维、大数据产品开发及JavaEE企业开发等。在评估时,制定一套全面的评价标准,从多角度反映学生的知识掌握程度、综合素质及专业能力,帮助学生发现自己存在的问题并加以改进。
在顶岗实习阶段,评价体系不仅要包括学校的管理和指导评价,还应包含企业的评价结果。综合考量学生在校外实习期间的表现、企业评价、实习报告以及毕业设计等方面的情况。学校老师主要负责评估学生的实习态度、纪律遵守、实习周记、报告提交及毕业设计材料的完成情况;而企业指导教师则重点考察学生的业务能力、劳动纪律、出勤状况、沟通合作能力和工作成果。学校和企业的评价结果各占顶岗实习总成绩的一部分,依据考核结果给予相应的等级评定,不合格的学生需要重新学习并通过考核才能获得毕业资格。
四、结语
为顺应时代发展的步伐,我们需不断优化与完善大数据技术专业的人才培养体系,这是一项需要高职院校、企业、社会机构及政府多方携手共进的系统工程。通过各方的协同努力,旨在构建一个既高效又全面的大数据技术专业人才培养框架,并持续探索与革新人才培养模式。未来,我们还应致力于建立健全的人才引进与培养机制,强化人才储备战略,以期在提升人才培养质量的同时,为大数据技术的发展提供坚实的人才支撑。
610

被折叠的 条评论
为什么被折叠?



