本题的解题思路时首先在二叉搜索树中找到需要删除的值,然后将节点删除,并重构删除后的左右子树部分
- 查找不用多说,二叉搜索树进行搜索即可
- 重构的方法是,删除节点,分为四种情况
-
- 该节点左右子节点都为空,则返回空即可
-
- 该节点存在左子节点,不存在右子节点,则返回左子节点即可
-
- 该节点存在右子节点,不存在左子节点,则返回右子节点即可
-
- 该节点同时存在左右子节点,则左子树的值都是小于右子树的,迭代到右子树的最左侧叶子节点,这个节点的值是右子树的最小值,将 待删除节点 的左子树 插入到右子树最左侧叶子节点的左节点,然后将 待删除节点的 右子节点作为新的节点返回。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if(root == nullptr){
return nullptr;
}
if(root->left == nullptr && root->right == nullptr && root->val == key){
return nullptr;
}else if(root->right == nullptr && root->val == key){
return root->left;
}else if(root->left == nullptr && root->val == key){
return root->right;
}else if(root->val == key){
TreeNode* newroot = root->right;
while(newroot->left != nullptr){
newroot = newroot->left;
}
newroot->left = root->left;
return root->right;
}
if(key < root->val){
root->left = deleteNode(root->left, key);
}
if(key > root->val){
root->right = deleteNode(root->right, key);
}
return root;
}
};