回溯法的解题步骤与例子解析

    回溯法有“通用解题法”之称。用它可以系统地搜索问题的所有解。回溯法是一个既带有系统性又带有跳跃性的搜索算法。

    在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

 

1.回溯法的解题步骤

(1)针对所给问题,定义问题的解空间;

(2)确定易于搜索的解空间结构;

(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

 

2.子集树与排列树

下面的两棵解空间树是回溯法解题时常遇到的两类典型的解空间树。

(1)当所给问题是从n个元素的集合S中找出S满足某种性质的子集时,相应的解空间树称为子集树。例如从n个物品的0-1背包问题(如下图)所相应的解空间树是一棵子集树,这类子集树通常有2^n个叶结点,其结点总个数为2^(n+1)-1。遍历子集树的算法需Ω(2^n)计算时间。


(2)当所给问题是确定n个元素满足某种性质的排列时,相应的解空间树称为排列树。例如旅行售货员问题(如下图)的解空间树是一棵排列树,这类排列树通常有n!个叶结点。遍历子集树的算法需Ω(n!)计算时间。



用回溯法搜索子集树的一般算法可描述为:

	/**
	 * output(x)     记录或输出得到的可行解x
	 * constraint(t) 当前结点的约束函数
	 * bount(t)      当前结点的限界函数
	 * @param t  t为当前解空间的层数
	 */
	void backtrack(int t){
		if(t >= n)
			output(x);
		else
			for (int i = 0; i <= 1; i++) {
				x[t] = i;
				if(constraint(t) && bount(t))
					backtrack(t+1);
			}
	}

用回溯法搜索排列树的一般算法可描述为:

	/**
	 * output(x)     记录或输出得到的可行解x
	 * constraint(t) 当前结点的约束函数
	 * bount(t)      当前结点的限界函数
	 * @param t  t为当前解空间的层数
	 */
	void backtrack(int t){
		if(t >= n)
			output(x);
		else
			for (int i = t; i <= n; i++) {
				swap(x[t], x[i]);
				if(constraint(t) && bount(t))
					backtrack(t+1);
				swap(x[t], x[i]);
			}
	}

3.回溯法的应用例子

(a)子集树

(为了便于描述算法,下列方法使用了较多的全局变量

I.输出集合S中所有的子集,即limit为all;

II.输出集合S中限定元素数量的子集,即limit为num

III.输出集合S中元素奇偶性相同的子集,即limit为sp。

public class Subset {
		
	private static int[] s = {1,2,3,4,5,6,7,8};
	private static int n = s.length;
	private static int[] x = new int[n];
	
	/**
	 * 输出集合的子集
	 * @param limit  决定选出特定条件的子集
	 * 注:all为所有子集,num为限定元素数量的子集,
	 *    sp为限定元素奇偶性相同,且和小于8。
	 */
	public static void all_subset(String limit){
		switch(limit){
		case "all":backtrack(0);break;
		case "num":backtrack1(0);break;
		case "sp":backtrack2(0);break;
		}
	}
	

	/**
	 * 回溯法求集合的所有子集,依次递归
	 * 注:是否回溯的条件为精髓
	 * @param t
	 */
	private static void backtrack(int t){
		if(t >= n)
			output(x);
		else
			for (int i = 0; i <= 1; i++) {
				x[t] = i;
				backtrack(t+1);
			}
		
	}
	
	/**
	 * 回溯法求集合的所有(元素个数小于4)的子集,依次递归
	 * @param t
	 */
	private static void backtrack1(int t){
		if(t >= n)
			output(x);
		else
			for (int i = 0; i <= 1; i++) {
				x[t] = i;
				if(count(x, t) < 4)
					backtrack1(t+1);
			}
		
	}

	/**
	 * (剪枝)
	 * 限制条件:子集元素小于4,判断0~t之间已被选中的元素个数,
	 *        因为此时t之后的元素还未被递归,即决定之后的元素
	 *        是否应该被递归调用
	 * @param x
	 * @param t
	 * @return
	 */
	private static int count(int[] x, int t) {
		int num = 0;
		for (int i = 0; i <= t; i++) {
			if(x[i] == 1){
				num++;
			}
		}
		return num;
	}

	/**
	 * 回溯法求集合中元素奇偶性相同,且和小于8的子集,依次递归
	 * @param t
	 */
	private static void backtrack2(int t){
		if(t >= n)
			output(x);
		else
			for (int i = 0; i <= 1; i++) {
				x[t] = i;
				if(legal(x, t))
					backtrack2(t+1);
			}
		
	}
	
	/**
	 * 对子集中元素奇偶性进行判断,还需元素的数组和小于8
	 * @param x
	 * @param t
	 * @return
	 */
	private static boolean legal(int[] x, int t) {
		boolean bRet = true;   //判断是否需要剪枝
		int part = 0;  //奇偶性判断的基准
		
		for (int i = 0; i <= t; i++) {  //选择第一个元素作为奇偶性判断的基准
			if(x[i] == 1){
				part = i;
				break;
			}
		}
		
		for (int i = 0; i <= t; i++) {
			if(x[i] == 1){
				bRet &= ((s[part] - s[i]) % 2 == 0);
			}
				
		}

		int sum = 0;
		for(int i = 0; i <= t; i++){
			if(x[i] == 1)
				sum += s[i];
		}
		bRet &= (sum < 8);
		    
		return bRet;
	}


	/**
	 * 子集输出函数
	 * @param x
	 */
	private static void output(int[] x) {
		for (int i = 0; i < x.length; i++) {
			if(x[i] == 1){
				System.out.print(s[i]);
			}
		}
		System.out.println();	
	}

}


(b) 排列树

(为了便于描述算法,下列方法使用了较多的全局变量)

I.输出集合S中所有的排列,即limit为all;

II.输出集合S中元素奇偶性相间的排列,即limit为sp。

public class Permutation {

	private static int[] s = {1,2,3,4,5,6,7,8};
	private static int n = s.length;
	private static int[] x = new int[n];
	
	/**
	 * 输出集合的排列
	 * @param limit  决定选出特定条件的子集
	 * 注:all为所有排列,sp为限定元素奇偶性相间。
	 */
	public static void all_permutation(String limit){
		switch(limit){
		case "all":backtrack(0);break;
		case "sp":backtrack1(0);break;
		}
	}
	

	/**
	 * 回溯法求集合的所有排列,依次递归
	 * 注:是否回溯的条件为精髓
	 * @param t
	 */
	private static void backtrack(int t){
		if(t >= n)
			output(s);
		else
			for (int i = t; i < n; i++) {
				swap(i, t, s);
				backtrack(t+1);
				swap(i, t, s);
			}
		
	}

	/**
	 * 回溯法求集合中元素奇偶性相间的排列,依次递归
	 * @param t
	 */
	private static void backtrack1(int t){
		if(t >= n)
			output(s);
		else
			for (int i = t; i < n; i++) {
				swap(i, t, s);
				if(legal(x, t))
					backtrack1(t+1);
				swap(i, t, s);
			}
		
	}
	
	/**
	 * 对子集中元素奇偶性进行判断
	 * @param x
	 * @param t
	 * @return
	 */
	private static boolean legal(int[] x, int t) {
		boolean bRet = true;   //判断是否需要剪枝
		
		//奇偶相间,即每隔一个数判断奇偶相同
		for (int i = 0; i < t - 2; i++) {
			bRet &= ((s[i+2] - s[i]) % 2 == 0);
		}
		    
		return bRet;
	}


	/**
	 * 元素交换
	 * @param i
	 * @param j
	 */
	private static void swap(int i, int j,int[] s) {
		int tmp = s[i];
		s[i] = s[j];
		s[j] = tmp;
	}
	
	/**
	 * 子集输出函数
	 * @param x
	 */
	private static void output(int[] s) {
		for (int i = 0; i < s.length; i++) {
				System.out.print(s[i]);
		}
		System.out.println();	
	}
}


参考文献:

1. 《算法设计与分析


  • 0
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
回溯法是一种决问题的算法思想,它通常用于求在一组可能的中找到满足特定条件的回溯法的基本思想是在搜索过程中寻找问题的,当发现当前的不能满足要求时,回溯到上一步进行新的尝试。 回溯法解题步骤如下: 1. 确定空间:首先明确问题的空间,即在哪些范围内搜索。例如,在一个迷宫中搜索一条从起点到终点的路径,这里的空间就是所有可能的路径。 2. 确定约束条件:对的可行性进行限制,即确定问题的约束条件。例如,在迷宫问题中,路径必须是连续的、不能穿过障碍物等。 3. 确定搜索方式:根据问题的特点确定搜索方式。对于深度优先搜索,从起点开始向某个方向搜索,搜索到死路或找到终点时回溯到上一个节点继续搜索;对于广度优先搜索,从起点开始向周围扩展,记录所有可行并逐层扩展。 4. 递归实现:通过递归实现回溯算法,根据搜索方式进行搜索,直到找到问题的或者搜索完整个空间。 5. 剪枝优化:在搜索过程中,可以通过剪枝操作来减少搜索的时间和空间复杂度,即对已经搜索的路径进行判断,如果不可能满足约束条件就不继续搜索。 6. 输出结果:当找到问题的时,将其输出。 需要注意的是,回溯法的时间复杂度往往比较高,因此需要合理地进行剪枝和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值