http://ejq.me/2014/01/15/bzoj3339/
这道题还是在这里贴一下吧2333
http://blog.ejq.me/oi/2014/01/15/bzoj3339/
题解在这里
我用的离线做法
我们得知道以下几点内容:
- 从某一项开始的 mex 是单调不减序列
- 从第i项开始的 mex 序列能通过从第 i−1 项开始的 mex 序列在 O(n) 的时间内修改得到
离线算法的复杂度为 O(nlogn)
- 首先,做出从第1项开始的 mex 序列,并与处理对于每一项 Ai ,下一次出现该项的位置 Nexti
- 然后,如何将第i项变为第 i+1 项呢?我们只需要将 (i,Nexti) 这一区间的所有大于 Ai 的项改为 Ai 即可
- 上一过程看起来是 O(n) 的,但事实上,平均每一次修改,我们至多修改 O(logn) 项
- 我们能在 O(1) 的时间内作出单一询问的回答
- 重复这一过程,直到处理完讯问队列
下面是AC代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
const int MAXN=200005;
struct Query{int q,l,r;}Que[MAXN];
// mex 如题所述
// next 下一次出现数字i的位置
// mp 数字i上一次出现的位置
// a 如题所述
int mex[MAXN],next[MAXN];
int a[MAXN];
map<int,int> mp;
int QUERYANS[MAXN];
int n,q;
bool comp(Query a,Query b)
{
return (a.l==b.l)?(a.r<b.r):(a.l<b.l);
}
void update(int from)
{
int to=next[from];
int val=a[from];
mex[from]=0;
if (!to)
to=n;
for (int i=to;i>from;i--)
{
if (mex[i]<val)
break;
mex[i]=val;
}
}
void work()
{
int lastwork=1;
for (int i=1;i<=q;i++)
{
if (Que[i].l!=lastwork)
for (int j=lastwork;j<Que[i].l;j++)
update(j);
lastwork=Que[i].l;
QUERYANS[Que[i].q]=mex[Que[i].r];
}
}
int main()
{
scanf("%d%d",&n,&q);
memset(a,-1,sizeof(a));
memset(mex,-1,sizeof(mex));
memset(next,0,sizeof(next));
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if (mp[a[i]]>0)
{
next[mp[a[i]]]=i-1;
mp[a[i]]=i;
}else
{
next[mp[a[i]]]=n;
mp[a[i]]=i;
}
}
mp.clear();
int min=0;
if (a[1]==0)
min=1;
mex[1]=min;mp[a[1]]=1;
for (int i=2;i<=n;i++)
{
mp[a[i]]=1;
while (mp[min])
min++;
mex[i]=min;
}
for (int i=1;i<=q;i++)
{
Que[i].q=i;
scanf("%d%d",&Que[i].l,&Que[i].r);
}
sort(&Que[1],&Que[q+1],comp);
//--预处理到此为止
work();
for (int i=1;i<=q;i++)
printf("%d\n",QUERYANS[i]);
return 0;
}
//--
//备注:
//mex问题
//对于给定的左边界,从这一个边界开始的mex一定是单调不减
//然后,就出结果了