机器学习----02

8 篇文章 0 订阅

线性回归

线性回归的本质为针对符合线性模型的一组数据, 可以找到一个线性方程拟合样本数据. 从而给出自变量后, 通过线性方程实现预测输出的目的.

输入        输出
0.5         5.0
0.6         5.5
0.8         6.0
1.1         6.8
1.4         7.0
...
y = kx + b

预测函数: y = w0 + w1x
x: 输入
y: 输出
w0 w1: 模型参数
所谓模型的训练, 就是根据已知的x与y, 找到最佳的模型参数w0 w1, 使得尽可能的精确描述所有输入和输出的关系(误差最小).
单样本误差:
根据预测函数求出输入为x时的预测值: y’ = w0 + w1x.
单样本误差则为: 1/2(y’ - y)2
总样本误差:
把所有单样本误差相加即是总样本误差: 1/2Σ(y’ - y)2
损失函数:
loss = 1/2Σ(w0 + w1x - y)2

所以最终的结果即是需要找到一组w0 w1使得loss函数值最小.

案例: 基于梯度下降理论实现线性回归, 求出w0w1.
1.整理训练集数据, 自定义梯度下降算法, 求出w0w1.

train_x = np.array([0.5, 0.6, 0.8, 1.1, 1.4])
train_y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])
test_x = np.array([0.45, 0.55, 1.0, 1.3, 1.5])
test_y = np.array([4.8, 5.3, 6.4, 6.9, 7.3])

times = 10000
lrate = 0.01    # 每次梯度下降参数的变化率  粒度
epoches = []    # 记录每次梯度下降的索引
w0, w1, losses = [1], [1], []     # 参数
# 1000次梯度下降
for i in range(1, times+1):
    epoches.append(i)
    loss = ((w0[-1] + w1[-1] * train_x - train_y)**2).sum()/2
    losses.append(loss)
    # 使用偏导数求出w0与w1梯度下降的值
    d0 = ((w0[-1] + w1[-1]*train_x) - train_y).sum()
    d1 = ((w0[-1] + w1[-1] * train_x - train_y) * train_x).sum()
    print('{:4}> w0={:.8f}, w1={:.8f}, loss={:.8f}, d0={:.8f}, d1={:.8f}'.format(epoches[-1], w0[-1], w1[-1], losses[-1], d0, d1))
    w0.append(w0[-1] - lrate*d0)
    w1.append(w1[-1] - lrate*d1)
    if '%.8f'%w0[-1] == '%.8f'%w0[-2] and '%.8f'%w1[-1] == '%.8f'%w1[-2]:
        break
mp.figure('Linear Regression')
mp.title('Linear Regression', fontsize=18)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(train_x, train_y, marker='s', c='dodgerblue', alpha=0.5, s=80, label='Training Points')

# 通过w0与w1, 绘制回归线
pred_train_y = w1[-1]*train_x + w0[-1]
mp.plot(train_x, pred_train_y, color='orangered', linewidth=2, label='Regression Line')

mp.legend()
mp.show()

2.绘制每次梯度下降过程中w0 w1 loss值的变化

# 绘制测试点
mp.scatter(test_x, test_y, marker='D', c='pink', alpha=0.5, s=60, label='Testing Poines')
mp.legend()

mp.figure('Training Progress')
mp.subplot(3, 1, 1)
mp.title('Training Progress', fontsize=16)
mp.ylabel('w0', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, w0[1:], label='w0')
mp.legend()

mp.figure('Training Progress')
mp.subplot(3, 1, 2)
mp.title('Training Progress', fontsize=16)
mp.ylabel('w1', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, w1[1:], label='w1')
mp.legend()

mp.figure('Training Progress')
mp.subplot(3, 1, 3)
mp.title('Training Progress', fontsize=16)
mp.ylabel('loss', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, losses, label='losses')
mp.legend()
mp.tight_layout()

3.基于三维曲面绘制梯度下降过程中的每一个空间点

import mpl_toolkits.mplot3d as axes3d

# 绘制控件曲面, 观察梯度下降过程
grid_w0, grid_w1 = np.meshgrid(
    np.linspace(0, 9, 500),
    np.linspace(0, 3.5, 500)
)
# zeros_like构建一个数组, 结构与grid_w0一致, 元素全为0
grid_loss = np.zeros_like(grid_w0)
for x, y in zip(train_x, train_y):
    grid_loss += (grid_w0 + x * grid_w1 - y)**2 / 2

# 绘制曲面
mp.figure('Loss Function')
ax = mp.gca(projection='3d')
mp.title('Loss Function', fontsize=16)
ax.set_xlabel('w0', fontsize=12)
ax.set_ylabel('w1', fontsize=12)
ax.set_zlabel('loss', fontsize=12)
ax.plot_surface(grid_w0, grid_w1, grid_loss, rstride=10, cstride=10, cmap='jet')

ax.plot(w0[:-1], w1[:-1], losses, 'o-', color='orangered')

4.以等高线的方式绘制梯度下降的过程

# 等高线
mp.figure('Contour')
mp.xlabel('w0', fontsize=14)
mp.ylabel('w1', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.contourf(grid_w0, grid_w1, grid_loss, 10, cmap='jet')
cntr = mp.contour(grid_w0, grid_w1, grid_loss, 10, colors='black', linewidths=0.5)
mp.clabel(cntr, inline_spacing=0.1, fmt='%.2f', fontsize=8)
mp.plot(w0, w1, 'o-', c='orangered', label='BGD')
mp.legend()

线性回归模型

sklearn提供了线性回归相关的API:

import sklearn.linear_model as lm
# 创建线性回归模型
model = lm.LinearRegression()
# 模型训练
# 输入: 一个二维数组表示的样本矩阵
# 输出: 每个样本最终的结果
model.fit(输入, 输出)
# 模型预测 给出与训练时格式相同的输入, 返回预测输出
result = model.predict(测试输入)

案例:基于线性回归训练single.txt中的样本, 使用模型预测样本.

x, y = np.loadtxt('./single.txt', delimiter=',', usecols=(0, 1), unpack=True)
x = x.reshape(-1, 1)    # n行1列
# 创建模型->训练模型->使用模型
model = lm.LinearRegression()
model.fit(x, y)
pred_y = model.predict(x)

mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=14)
mp.xlabel('x', fontsize=12)
mp.ylabel('y', fontsize=12)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.5, s=60, label='Sample Points')
mp.plot(x, pred_y, c='orangered', linewidth=3, label='Regression')
mp.legend()
mp.show()

评估训练结果的误差

线性回归模型训练完毕后, 可以利用测试集评估训练结果误差.sklearn.metrics提供了计算模型误差的几个常用算法:

import sklearn.metrics as sm
# 平均绝对值误差: 1/m*∑|实际输出-预测输出|
sm.mean_absolute_error(y, pred_y)
# 平均平方误差: sqrt(1/m*∑(实际输出-预测输出)^2)
sm.mean_squared_error(y, pred_y)
# 中位数绝对值误差: median(|实际输出-预测输出|)
sm.median_absolute_error(y, pred_y)
# R2得分(0, 1]区间上的分值, 分数越高, 模型越好.

案例:

# 输出误差指标
print(sm.mean_absolute_error(y, pred_y))
print(sm.mean_squared_error(y, pred_y))
print(sm.median_absolute_error(y, pred_y))
print(sm.r2_score(y, pred_y))

模型的保存与加载

模型训练是一个耗时的过程, 一个优秀的机器学习模型是很宝贵的. 可以把模型保存到磁盘中, 也可以在需要的时候从磁盘中重新加载模型. 不需要重新训练.
模型保存和加载的相关API:

import pickle
pickle.dump(内存对象, 磁盘文件) # 保存模型
model = pickle.load(磁盘文件) # 加载模型

案例: 把训练好的模型保存到磁盘中, 在合适的时间读取模型对象.

# 保存模型
with open('linear.pkl', 'wb') as f:
    pickle.dump(model, f)

# 加载模型
with open('linear.pkl', 'rb') as f:
    model = pickle.load(f)

pred_y = model.predict(x)

岭回归

普通线性回归模型使用基于梯度下降的最小二乘法, 在损失函数最小化的前提下, 寻找最优的模型参数. 在此过程中, 包括少数异常样本在内的全部训练数据会对模型参数造成相当程度的一些影响, 而异常样本无法再训练过程中被识别出来. 为此, 岭回归在模型迭代过程中增加了正则项, 以限制模型参数对异常样本的匹配程度. 进而提高模型对多数正常本的拟合精度.
岭回归相关API:

import sklearn.linear_model as lm
# 正则强度: 该数字越大, 越忽略异常样本
# fit_intercept: 是否训练截距
# max_iter: 最大迭代次数
m = lm.Ridge(正则强度, fit_intercept=True, max_iter=1000)
# 训练模型
m.fit(输入, 输出)
# 使用模型
pred_y = m.predict(test_x)

案例:加载abnormal.txt

# 使用岭回归
model = lm.Ridge(150, fit_intercept=True, max_iter=1000)
model.fit(x, y)
pred_y = model.predict(x)
print(sm.r2_score(y, pred_y))

mp.plot(x, pred_y, c='limegreen', linewidth=3, label='Ridge Regression')

多项式回归

若希望回归模型更好的拟合训练样本的数据, 可以使用多项式回归器.
####一元多项式回归
y = w 0 + w 1 x + w 2 x 2 + w 3 x 3 + . . . + w d x d y = w_0 + w_1x + w_2x^2 + w_3x^3 + ... + w_dx^d y=w0+w1x+w2x2+w3x3+...+wdxd
将高次项看做对一次项的扩展:
y = w 0 + w 1 x x 1 + w 2 x 2 + w 3 x 3 + . . . + w d x d y = w_0 + w_1xx_1 + w_2x_2 + w_3x_3 + ... + w_dx_d y=w0+w1xx1+w2x2+w3x3+...+wdxd
那么一元多项式回归即可以看做多元线性回归.可以直接使用LinearRegression模型对样本数据进行模型训练.

所以一元多项式回归的实现需要两个步骤:

  1. 将一元多项式回归问题转换为多元线性回归问题(只需给出高次数)
  2. 将1步骤得到的多项式结果中w1 w2…当做样本特征, 交给线性回归器训练多元线性模型.
    使用sklearn提供的数据管线实现两个步骤的顺序执行:
import sklearn.pipeline as pl
import sklearn.preprocessing as sp
import sklearn.linear_model as lm
# 该管线将会组织两个步骤, 首先使用多项式特征扩展器扩展出多项式, 
# 而后把数据交给线性回归器训练多元线性模型
model = pl.make_pipeline(
    sp.PolynomialFeatures(5), # 多项式特征扩展器
    lm.LinearRegression() # 线性回归器
)

案例:

x, y = np.loadtxt('./single.txt', delimiter=',', usecols=(0, 1), unpack=True)
x = x.reshape(-1, 1)    # n行1列
# 创建管线
model = pl.make_pipeline(
    sp.PolynomialFeatures(2),
    lm.LinearRegression()
)
model.fit(x, y)
pred_y = model.predict(x)
print(sm.r2_score(y, pred_y))

mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=14)
mp.xlabel('x', fontsize=12)
mp.ylabel('y', fontsize=12)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.5, s=60, label='Sample Points')

x = np.linspace(x.min(), x.max(), 1000)
x = x.reshape(-1, 1)
y = model.predict(x)
mp.plot(x, y, color='orangered', linewidth=2,
        label='Poly Regression')

mp.legend()
mp.show()

过于简单的模型, 无论对于训练数据还是测试数据都无法给出足够高的精度, 这种现象叫做欠拟合.

过于复杂的模型, 对于训练数据可以得到较高的预测精度, 但是对于预测数据通常精度较低. 这种现象叫过拟合.

一个性能可以接收的学习模型, 应该对训练数据和测试数据都有接近的预测精度, 而且精度不能太低.

决策树

基本算法原理

核心思想: 相似的输入必会产生相似的输出. 比如预测薪资
年龄: 1-青年, 2-中年, 3-老年
学历: 1-本科, 2-硕士, 3-博士
经验: 1-出道, 2-一般, 3-老手, 4-骨灰
性别: 1-男性, 2-女性

年龄学历工作经验性别==>薪资
1111==>6000
2131==>10000
3341==>50000
............==>...
1221==>?
为了提高搜索效率, 使用树形数据结构处理样本数据:

年 龄 1 { 学 历 1 学 历 2 学 历 3 年 龄 1 { 学 历 1 学 历 2 学 历 3 年 龄 1 { 学 历 1 学 历 2 学 历 3 年龄1\left\{ \begin{aligned} 学历1 \\ 学历2 \\ 学历3 \\ \end{aligned} \right. \quad\quad 年龄1\left\{ \begin{aligned} 学历1 \\ 学历2 \\ 学历3 \\ \end{aligned} \right. \quad\quad 年龄1\left\{ \begin{aligned} 学历1 \\ 学历2 \\ 学历3 \\ \end{aligned} \right. 112311231123
首先从训练样本矩阵中选择第一个特征值进行子表划分, 使每个子表中该特征的值全部相同. 然后在每个子表中选择下一个特征按照同样的规则继续划分更小的子表. 不断重复, 知道所有的特征全部使用完为止.

此时便得到了叶级子表, 其中所有样本的特征值全部相同. 对于带预测样本, 根据其每一个特征的值, 选择对应的子表, 逐一匹配, 知道找到阈值全部匹配的叶级子表, 利用该子表中样本的输出, 通过平均(回归问题)或投票(分类问题)为带预测样本提供预测输出.

随着子表的划分, 信息熵(混乱程度)会越来越小, 信息越来越纯, 数据越来越精准.

决策树回归器模型相关API:

import sklearn.tree as st
# 创建决策树回归器模型
# max_depth: 数的最大深度
model = st.DecisionTreeRegressor(max_depth=4)
model.fit(train_x, train_y)
# 使用模型
pred_y = model.predict(test_x)

案例:预测波士顿地区房屋价格.

boston = sd.load_boston()
print(boston.data.shape)
print(boston.target.shape)
print(boston.feature_names)

# 打乱原始输入输出数据集, 划分测试集, 训练集, random_state: 随机种子, 一致打乱结果一致
x, y = su.shuffle(boston.data, boston.target, random_state=7)
# 划分测试集, 训练集
train_size = int(len(x) * 0.8)
train_x, train_y, test_x, test_y = x[:train_size], y[:train_size], \
    x[train_size:], y[train_size:]

# 创建模型, 使用训练集进行模型训练
model = st.DecisionTreeRegressor(max_depth=10)
model.fit(train_x, train_y)
# 测试集数据预测
pred_test_y = model.predict(test_x)
# 输出R2得分
print(sm.r2_score(test_y, pred_test_y))
集合算法

根据多个不同模型给出的预测结果, 利用平均(回归问题)或者投票(分类问题)的方法, 得出最终预测的结果.

基于决策树的集合算法, 就是按照某种规则构建多棵彼此不同的决策树模型, 分别给出针对未知样本的预测结果, 最后通过平均或投票的方式得到相对综合的结论.

正向激励

首先为样本矩阵中每行样本随机分配初始权重, 由此构建一棵带有权重的决策树. 在使用该决策树提供预测输出时, 通过加权平均或加权投票的方式产生预测值. 将训练样本代入模型, 预测输出, 对那些预测失败的样本, 提高其权重, 由此形成第二棵树. 重复以上过程, 构建出不同权重的n棵树.

正向激励相关API:

import sklearn.tree as st
import sklearn.ensemble as se
# 普通决策树模型
model = st.DecisionTreeRegressor(max_depth=4)
# 使用正向激励集合算法构建400棵树
se.AdaBoostRegressor(model, # 基础模型 n_estimators=400, random_state=7)
model.fit(train_x, train_y)
test_y = model.predict(test_x)

案例:

boston = sd.load_boston()
print(boston.data.shape)
print(boston.target.shape)
print(boston.feature_names)

# 打乱原始输入输出数据集, 划分测试集, 训练集, random_state: 随机种子, 一致打乱结果一致
x, y = su.shuffle(boston.data, boston.target, random_state=6)
# 划分测试集, 训练集
train_size = int(len(x) * 0.8)
train_x, train_y, test_x, test_y = x[:train_size], y[:train_size], \
    x[train_size:], y[train_size:]

# 创建模型, 使用训练集进行模型训练
model = st.DecisionTreeRegressor(max_depth=10)
model.fit(train_x, train_y)
# 测试集数据预测
pred_test_y = model.predict(test_x)
# 输出R2得分
print(sm.r2_score(test_y, pred_test_y))

model = se.AdaBoostRegressor(
    model,
    n_estimators=400,
    random_state=7
)
model.fit(train_x, train_y)
pred_test_y = model.predict(test_x)
print(sm.r2_score(test_y, pred_test_y))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值