自己写了个超级繁琐版本,好不容易通过了,记录一下大佬版本,毕竟拿笔画了半天还写了那么多注释呢(狗头)
自己写的方法,有个问题是range()函数是左闭右开区间,而且当左右区间节点一样的时候,压根不进入循环,直接跳过,这里耽误了很久才发现问题。
然后大佬的,第一种方法是分别找出左右边界然后相减。其中判断数组内是否有target还有判断nums[m]与target关系的时候等号给谁的时候犯了迷糊,写写画画才明白。
class Solution(object):
#找出左右边界然后-1
def search(self, nums, target):
i,j=0,len(nums)-1
#先找右边界
while i<=j:
m=(i+j)//2
if nums[m]<=target:
#找右边界的时候等号给右边(nums[m]==target就继续右移右边界,直到达到边界(不相等))
i=m+1
else:
j=m-1
right=i
#如果数组中不存在target,则提前返回
if j>=0 and nums[j]!=target:
return 0
#如果存在target,则nums[j]必然等于target,哪怕当时的区间很长。
#因为i是右边界,只有j在i左边的时候才会跳出循环,否则一直j=m-1,直到nums[j]==target
i=0
#寻找左边界
while i<=j:
m=(i+j)//2
if nums[m]<target:
#找左边界的时候等号给左边(nums[m]==target就继续左移左边界,直到达到边界(不相等))
i=m+1
else:
j=m-1
left=j
return right-left-1
第二种,封装了一个函数
class Solution:
def search(self, nums, target):
def helper(tar):
i, j = 0, len(nums) - 1
while i <= j:
m = (i + j) // 2
if nums[m] <= tar: i = m + 1
else: j = m - 1
return i
return helper(target) - helper(target - 1)
无论target-1是不是存在于数组当中,代码都可以正确给出结果。因为helper(target)返回的是target的下一个位置,helper(target - 1)返回的是第一个target的位置。
例如,给定数组为[5,7,8,8,8,9], target = 8,helper(target)返回的是“9”的位置,也就是5,helper(target - 1)返回的是第一个8的位置。
因为两次调用返回的都是右边界,target的右边界是最后一个8的下一位,target-1的右边界是第一个target,这样就确定了需要的区间。与target-1是谁、在不在数组里没啥关系。