通过源码学算法--AdaBoost: CART插播

1. 简介 CART(Classification and Regression Tree)是一个采用二分法递归划分生成的二叉树。粗略的讲,分类结果是离散的就是分类,是连续的实数就是回归树。 2. 特点 2.1 优点 本质上是无参估计(non-parametric)。就是不管待估计...

2013-03-30 21:43:52

阅读数:1223

评论数:0

通过源码学算法--AdaBoost (CART): RealAdaBoost.m + tree_node_w.m

tree_node_w.m 代表分类树的类结构。很简单,只有5个成员 如果是左树则只有right_constraint有值,如果是右树则只有left_constraint有值 实际上在这里是一个类多用了。 比如一个训练好的最大深度为3(max_split == 3)的CART 树有四个节点...

2013-03-30 09:15:44

阅读数:2031

评论数:3

通过源码学算法--AdaBoost (CART) -- 楔子

引子 看源码一直以来是我学习各种算法的主要方式。没办法,数学太差,看到各种paper上的古怪公式就犯恶心。不过等明白了具体实现做法,倒也能理解写公式的苦衷:任何算法实现时都有不少的假设和work around,这些拿不上台面的东西,哪有数学公式看着纯粹与专业呢 这些年陆陆续续看...

2013-03-27 01:02:07

阅读数:1734

评论数:0

Deformable Part Model 实现细节

Overview Step 1. Compute filter responses to the feature pyramid Each level of features (e.g. 46) is convolved with every stored part filters (e.g....

2013-03-22 03:17:09

阅读数:1209

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭