使用lio_sam建图,然后使用LIO-SAM_based_relocalization-master导航

博客介绍了LIO-SAM(激光惯导SLAM)的实现,并提到了一位开发者在其基础上增加了重定位功能,尽管存在精度和速度问题,但整体性能优于一些粒子滤波的开源实现。提供了两个GitHub链接供读者参考学习3D-SLAM和导航技术。
摘要由CSDN通过智能技术生成
建图

lio_sam建图,大佬代码写的一般,但是能实现功能又会写代码的人已经很牛了,
地址:https://github.com/TixiaoShan/LIO-SAM

导航

网上有个小哥(应该是哈工大的那波人,都写的是HIT),在lio_sam的基础上增加了重定位,感觉还可以用,比一波粒子滤波的开源代码强一些。最起码定位频率和精度还跟得上,缺点是重定位不准,慢,可能还需要详细看代码调试,真实测试应该很快同时定位准确。
地址:https://github.com/Gaochao-hit/LIO-SAM_based_relocalization
来2张导航图
在这里插入图片描述

在这里插入图片描述
感觉已经学会3D-SLAM了,哈哈开玩笑

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

可峰科技

生活不易

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值