首先说下原来错误的思路:就是新地图匹配上旧地图,然后就把旧地图替换,或者更新旧地图,这种思路错误的原因是,任何的匹配都是有匹配误差的,从1月份一直匹配到12月份,就算一个月的累积误差是1mm,12个月后也有1cm的误差了,这显然不是自动更新想看到的。
那后来怎样的思路呢?
这里我们总想着要扔掉旧地图,这就是错误的根源(死胡同),扔掉了旧地图就会出现上面的问题,1天不会有太大的误差,一个星期后就不好说喽,特别是环境变化大的场地。那这就遇到了似乎永远解决不了的难题,其实是我们进入了一个死胡同,那就是我们惯性思维的认为地图100%会发生改变。
如果有99%的地图经常发生改变,但是有1%的地图永远不改变,我们是否可以实现自动更新地图呢?这个是可以的,我们可以利用这个1%的区域实现初始化重定位,然后绕着变化的99%的区域走一圈,然后再回到1%不变的区域实现闭环检测实现累计误差的消除,同时更新了变化的99%的区域。而且每次更新的误差维持在同一水平。
如何有1%不变的区域呢?
1-真的有1%的区域是不变的(自动更新精度是初始化匹配的精度)
2-使用landmark(激光特征、反光柱、二维码)保持一个全局唯一位置,可以让机器人开机自定位(自动更新精度是landmark
本文探讨了自动驾驶中自动更新地图的正确思路,指出避免误差累积的关键在于利用地图中不变的1%区域进行初始化重定位和闭环检测。通过Cartographer的解决方案,实现了地图更新的同时控制精度在±2cm内。测试表明,即使地图90%区域发生变化,系统仍能有效工作。
订阅专栏 解锁全文
1962

被折叠的 条评论
为什么被折叠?



