分水岭算法(代码有问题,谁看出来了,求评论,谢谢)

分水岭算法

步骤:

1加载原始图像

2阈值分割,将图像分割为黑白两个部分

3对图像进行开运算,即先腐蚀再膨胀

4对开运算的结果再进行膨胀,得到大部分是背景的区域

5通过距离变换Distance Transform获取前景区域

6背景区域sure_bg和前景区域sure_fg相减,得到既有前景又有背景的重合区域

7连通区域处理

8最后使用分水岭算法

代码有问题,不知道错哪里了。。

import cv2
import numpy as np
img = cv2.imread('test4.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
##第二:阈值分割,将图像分为黑白两部分
ret,thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
#第三步:对图像进行开运算,先腐蚀再膨胀
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel,iterations=2)
#第四步:对开运算的结果进行膨胀,得到大部分都是背景的区域
sure_bg = cv2.dilate(opening,kernel,iterations=3)
cv2.imshow("sure_jpg",sure_bg)
cv2.waitKey(0)
cv2.destroyAllWindows()
#第五步:通过distanceTransform获取前景区域
dist_transform = cv2.distanceTransform(opening,jcv2.DIST_L2,5)
print(dist_transform.max())
ret,sure_fg = cv2.threshold(dist_transform,0.1*dist_transform.max(),255,0)
cv2.imshow('sure_fg',sure_fg)
cv2.waitKey()
cv2.destoryAllWindows()
#第六步:sure_bg与sure_fg相减,得到既有前景又有背景的重合区域
sure_fg = np.uint8(sure_fg)
unknow = cv2.subtract(sure_bg,sure_fg)
cv.imshow("unknow",unknow)
cv2.waitKey(0)
cv2.destoryAllWindows()
#第七步:连通区域处理
ret,markers = cv2.connectedComponents(sure_fg,connectivity=8)
print(ret)
markers = markers +1
markers[unknow==255] =0
#第八步:分水岭算法
markers = cv2.watershed(img,markers)
#分水岭算法后,所有轮廓的像素点被标注为-1
img[markers==-1]=[0,0,255]
cv2.imshow("dst",img)
cv2.waitKey()
cv2.destoryAllWindows()

代码结果只是出第一个图,错在哪里了,也不知道呢。求解答啊

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页