LDA(Linear Discriminant Analysis)是一种经典的线性判别方法,又称Fisher判别分析。该方法思想比较简单:给定训练集样例,设法将样例投影到一维的直线上,使得同类样例的投影点尽可能接近和密集(即希望类内离散度越小越好),异类投影点尽可能远离(即希望两类的均值点之差越小越好)
两类数据点的类心分别是
μ
1
=
1
∣
C
1
∣
∑
x
∈
C
1
x
和
μ
2
=
1
∣
C
2
∣
∑
x
∈
C
2
x
\mu_{1}=\frac{1}{|C_{1}|}\sum_{x\in C_{1}}x和\mu_{2}=\frac{1}{|C_{2}|}\sum_{x\in C_{2}}x
μ1=∣C1∣1x∈C1∑x和μ2=∣C2∣1x∈C2∑x。
样本点
x
x
x投影到
w
w
w方向上后,在一维直线上得到的点为:
y
=
w
T
x
y=w^{T}x
y=wTx。
投影后的类心为:
m
k
=
1
∣
C
k
∣
∑
x
∈
C
k
w
T
x
=
w
T
1
∣
C
k
∣
∑
x
∈
C
k
x
=
w
T
μ
k
m_{k}=\frac{1}{|C_{k}|}\sum_{x\in C_{k}}w^{T}x=w^{T}\frac{1}{|C_{k}|}\sum_{x\in C_{k}}x=w^{T}\mu_{k}
mk=∣Ck∣1x∈Ck∑wTx=wT∣Ck∣1x∈Ck∑x=wTμk
类心间距为:
(
m
1
−
m
2
)
2
=
(
m
1
−
m
2
)
(
m
1
−
m
2
)
T
=
w
T
(
μ
1
−
μ
2
)
(
μ
1
−
μ
2
)
T
w
=
w
T
S
b
w
(m_{1}-m_{2})^{2}=(m_{1}-m_{2})(m_{1}-m_{2})^{T}\\ =w^{T}(\mu_{1}-\mu_{2})(\mu_{1}-\mu_{2})^{T}w=w^{T}S_{b}w\\
(m1−m2)2=(m1−m2)(m1−m2)T=wT(μ1−μ2)(μ1−μ2)Tw=wTSbw
其中
S
b
S_{b}
Sb称为类间散度矩阵:
S
b
=
(
μ
1
−
μ
2
)
(
μ
1
−
μ
2
)
T
S_{b}=(\mu_{1}-\mu_{2})(\mu_{1}-\mu_{2})^{T}
Sb=(μ1−μ2)(μ1−μ2)T
类内距离用类内样本的方差来衡量,对于第
k
k
k个类别,方差为
S
k
=
∑
x
∈
C
k
(
y
−
m
k
)
2
=
∑
x
∈
C
k
(
w
T
(
x
−
μ
k
)
)
2
=
∑
x
∈
C
k
(
w
T
(
x
−
μ
k
)
)
(
w
T
(
x
−
μ
k
)
)
T
=
∑
x
∈
C
k
(
w
T
(
x
−
μ
k
)
(
x
−
μ
k
)
T
w
)
=
w
T
[
∑
x
∈
C
k
(
x
−
μ
k
)
(
x
−
μ
k
)
T
]
w
S_{k}=\sum_{x\in C_{k}}(y-m_{k})^{2}=\sum_{x\in C_{k}}(w^T({x}-\mu_{k}))^{2}\\ =\sum_{x\in C_{k}}(w^T({x}-\mu_{k}))(w^T({x}-\mu_{k}))^{T}\\ =\sum_{x\in C_{k}}(w^T({x}-\mu_{k})(x-\mu_{k})^{T}w)\\ =w^T[\sum_{x\in C_{k}}({x}-\mu_{k})(x-\mu_{k})^{T}]w
Sk=x∈Ck∑(y−mk)2=x∈Ck∑(wT(x−μk))2=x∈Ck∑(wT(x−μk))(wT(x−μk))T=x∈Ck∑(wT(x−μk)(x−μk)Tw)=wT[x∈Ck∑(x−μk)(x−μk)T]w
所有类别类内距离之和为:
S
1
2
+
S
2
2
=
w
T
[
∑
x
∈
C
1
(
x
−
μ
1
)
(
x
−
μ
1
)
T
+
∑
x
∈
C
2
(
x
−
μ
2
)
(
x
−
μ
2
)
T
]
w
S_{1}^{2}+S_{2}^{2}\\=w^T[\sum_{x\in C_{1}}({x}-\mu_{1})(x-\mu_{1})^{T}+\sum_{x\in C_{2}}({x}-\mu_{2})(x-\mu_{2})^{T}]w
S12+S22=wT[x∈C1∑(x−μ1)(x−μ1)T+x∈C2∑(x−μ2)(x−μ2)T]w
所以类内散度矩阵为:
S
w
=
∑
x
∈
C
1
(
x
−
μ
1
)
(
x
−
μ
1
)
T
+
∑
x
∈
C
2
(
x
−
μ
2
)
(
x
−
μ
2
)
T
S_{w}=\sum_{x\in C_{1}}({x}-\mu_{1})(x-\mu_{1})^{T}+\sum_{x\in C_{2}}({x}-\mu_{2})(x-\mu_{2})^{T}
Sw=x∈C1∑(x−μ1)(x−μ1)T+x∈C2∑(x−μ2)(x−μ2)T
我们的优化目标是提升类间距离,减小类内距离,所以可最大化函数:
J
(
w
)
=
(
m
1
−
m
2
)
2
S
1
2
+
S
2
2
=
w
T
S
b
w
w
T
S
w
w
J(w)=\frac{(m_{1}-m_{2})^{2}}{S_{1}^{2}+S_{2}^{2}}=\frac{w^{T}S_{b}w}{w^{T}S_{w}w}
J(w)=S12+S22(m1−m2)2=wTSwwwTSbw
从上式可以看出,
J
J
J与
w
w
w的方向有关,确定方向后,与
w
w
w的长度无关。求解过程中,分子分母会同时变化,所以首先固定分母为某一个非0常数,即:
w
T
S
w
w
=
c
,
c
≠
0
w^{T}S_{w}w=c,c\neq 0
wTSww=c,c̸=0,此时求解
J
(
w
)
J(w)
J(w)等价于:
max
w
w
T
S
b
w
s
.
t
.
w
T
S
w
w
=
c
,
c
≠
0
\max_{w} w^{T}S_{b}w\\ s.t. \ w^{T}S_{w}w=c,c\neq 0
wmaxwTSbws.t. wTSww=c,c̸=0
此时可应用拉格朗日(Lagrange)乘数法:
L
(
w
,
λ
)
=
w
T
S
b
w
−
λ
(
w
T
S
w
w
−
c
)
L(w,\lambda)=w^{T}S_{b}w-\lambda(w^{T}S_{w}w-c)
L(w,λ)=wTSbw−λ(wTSww−c)
∂
L
(
w
,
λ
)
∂
w
=
(
S
b
+
S
b
T
)
w
−
λ
(
S
w
+
S
w
T
)
w
=
2
S
b
w
−
2
λ
S
w
w
=
0
\frac{\partial L(w,\lambda)}{\partial w}=(S_{b}+S_{b}^{T})w-\lambda(S_{w}+S_{w}^{T})w\\ =2S_{b}w-2\lambda S_{w}w=0
∂w∂L(w,λ)=(Sb+SbT)w−λ(Sw+SwT)w=2Sbw−2λSww=0
化简可得:
S
w
−
1
S
b
w
=
λ
w
S_{w}^{-1}S_{b}w=\lambda w
Sw−1Sbw=λw
S
b
w
=
(
μ
1
−
μ
2
)
(
μ
1
−
μ
2
)
T
w
=
β
(
μ
1
−
μ
2
)
S_{b}w=(\mu_{1}-\mu_{2})(\mu_{1}-\mu_{2})^{T}w=\beta(\mu_{1}-\mu_{2})
Sbw=(μ1−μ2)(μ1−μ2)Tw=β(μ1−μ2)表明
S
b
w
S_{b}w
Sbw的方向恒为
μ
1
−
μ
2
\mu_{1}-\mu_{2}
μ1−μ2,带入上式可得:
w
=
β
λ
S
w
−
1
(
μ
1
−
μ
2
)
w=\frac{\beta}{\lambda}S_{w}^{-1}(\mu_{1}-\mu_{2})
w=λβSw−1(μ1−μ2)
又因为
w
w
w只与方向有关,与长度无关,所以上式可以写为:
w
=
S
w
−
1
(
μ
1
−
μ
2
)
w=S_{w}^{-1}(\mu_{1}-\mu_{2})
w=Sw−1(μ1−μ2)
考虑到数值解的稳定性,在实践中通常对
S
w
S_{w}
Sw进行奇异值分解,即
S
w
=
U
Σ
V
T
S_{w}=U\Sigma V^{T}
Sw=UΣVT,然后再由
S
w
−
1
=
V
Σ
−
1
U
T
S_{w}^{-1}=V\Sigma ^{-1}U^{T}
Sw−1=VΣ−1UT。矩阵的奇异值分解可以参考:https://blog.csdn.net/winycg/article/details/83005881
sklearn实现LDA线性判别:
import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
y = np.array([1, 1, 1, 2, 2, 2])
clf = LinearDiscriminantAnalysis(solver='svd')
clf.fit(X, y)
print(clf.predict([[-0.8, -1]])) # [1]