winycg的博客

学习笔记

排序:
默认
按更新时间
按访问量

决策树

最大信息增益 熵(entropy): 随机变量XXX,其取值为{P(X=V1)=P1,...,P(X=VC)=PC}\{P(X=V_{1})=P_{1},...,P(X=V_{C})=P_{C}\}{P(X=V1​)=P1​,...,P(X=VC​)=PC​},XXX的熵为H(X)=−∑i=1...

2018-09-18 20:11:03

阅读数:3

评论数:0

vim编辑器常用命令整理

参考:http://www.runoob.com/linux/linux-vim.html vim键盘图: vim主要分为三个模式: 命令模式(Command mode),输入模式(Insert mode)和底线命令模式(Last line mode) 命令模式 刚启动vim时,进入...

2018-09-16 22:03:12

阅读数:6

评论数:0

LaTeX表格Table使用解析

1.标准的表格格式: \begin{table}[htbp] \centering % 显示位置为中间 \caption{standard table} % 表格标题 %字母的个数对应列数,|代表分割线 % l代表左对齐,c代表居中,r代表右对齐 \begin{tabular}{|...

2018-09-11 21:58:34

阅读数:29

评论数:0

python3下的import模块层次关系总结

1.假设文件夹A包含两个py文件,那么此时某个py文件的模块搜索路径为 A a.py b.py import sys print(sys.path) Output: ['/home/winycg/A', '/home/winycg/anaconda3/lib/python...

2018-08-24 17:00:15

阅读数:67

评论数:0

LaTex数学符号,公式解析与伪代码书写

LaTex常用的具有数学意义的符号: 参考链接:https://blog.csdn.net/lanchunhui/article/details/54633576 mathbb:blackboard bold,黑板粗体 mathcal:calligraphy(美术字) mathrm:m...

2018-07-27 18:09:11

阅读数:34

评论数:0

怎样将生成的pdf文件转为eps文件

本人写论文时一般是在Power Point画图,以下介绍怎样将画好的图无失真的转化为矢量图.eps。 需要用到软件Microsoft Visio和Inkscape。 首先在PPT中画好所需要的图,例如: 将上述的表格选中,并复制到软件Visio中去,之后,”设计“→“大小”→“适应绘图”...

2018-07-26 20:54:03

阅读数:125

评论数:0

linux下的wget命令实现断点下载

参考链接: http://man.linuxde.net/wget https://www.cnblogs.com/cindy-cindy/p/6847502.html wget命令用来从指定的URL下载文件。wget非常稳定,它在带宽很窄的情况下和不稳定网络中有很强的适应性,如果是由于网络...

2018-07-23 20:31:23

阅读数:38

评论数:0

pytorch入门教程

pytorch与tensorflow区别 https://yq.aliyun.com/articles/183473 pytorch安装 进入官网:https://pytorch.org/ 根据配置可以生成相应的安装命令,运行之后,会安装torch和torchvision这两个库。 t...

2018-07-21 17:17:13

阅读数:37

评论数:0

python稀疏矩阵的存储与表示

参考链接: https://blog.csdn.net/bitcarmanlee/article/details/52668477 python scipy中的sparse模块就是为存储和表示稀疏矩阵。 模块的导入以及查看模块的信息: from scipy import sparse ...

2018-07-09 10:59:40

阅读数:152

评论数:0

神经网络模型压缩知识点整理

FLOP

2018-07-06 21:40:11

阅读数:39

评论数:0

LaTeX常用代码解析

标题以及纸张边距设置 \documentclass{article} \title{tutorials} \author{winycg} \date{\today} \usepackage[a5paper, left=10mm, right=10mm, top=15mm, bottom=1...

2018-07-05 00:03:35

阅读数:68

评论数:0

win10 Tex Live + Texstudio安装

参考地址:https://blog.csdn.net/qq_38386316/article/details/80272396 安装TexLive 镜像下载地址:http://www.tug.org/texlive/ 下载on DVD 下载iso镜像文件: 双击下载后的i...

2018-07-02 22:25:16

阅读数:484

评论数:0

IEEE模板的latex使用

IEEE模板下载 下载IEEE的conference和transaction的latex模板文件: conference:https://www.ieee.org/conferences/publishing/templates.html transaction模板:https://ieee...

2018-07-02 22:06:24

阅读数:307

评论数:0

docker常用命令

通过Dockerfile构建镜像 docker build -t image-name docker-file-location -t:使用提供的image-name来标记构建的镜像 运行docker容器 docker run -d image-name

2018-06-15 00:32:15

阅读数:34

评论数:0

TensorFlow 利用Dataset读取和构建数据

参考链接: Dataset官方链接 TensorFlow全新的数据读取方式:Dataset API入门教程 知乎:十图详解tensorflow数据读取机制(附代码) TensorFlow数据读取方式: 利用placeholder读取内存数据 利用queue读取硬盘中的数据 Datase...

2018-06-05 22:07:36

阅读数:446

评论数:2

linux ldconfig命令,环境变量文件配置详解

ldconfig 参考:http://man.linuxde.net/ldconfig https://blog.csdn.net/chenzixun0/article/details/56278632 主要是在默认搜寻目录/lib和/usr/lib以及动态库配置文件/etc/ld.so.c...

2018-06-04 20:42:42

阅读数:237

评论数:0

Caffe安装(Ubuntu16.04 GPU版本)以及入门

参考链接: Caffe官网 Caffe入门小教程 Caffe的全称为Convolutional Architecture for Fast Feature Embedding。主要优势如下: (1)容易上手,网络结构都是以配置文件.prototxt形式定义,类似json格式,不需要用代码设...

2018-06-02 21:27:51

阅读数:127

评论数:0

Docker的安装和使用

参考链接:Docker中文教程 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源。 Docker 可以轻松的为任何应用创建一个轻量级的、可移植的、自给自足的容器。开发者在笔记本上编译测试通过的容器可以批量地在生产环境中部署,包括VMs(虚拟机)、bar...

2018-06-02 01:07:53

阅读数:1215

评论数:0

Tensorflow实现AlexNet

测试前5层卷积层的前向计算与后向计算的时间: from datetime import datetime import math import time import tensorflow as tf batch_size = 32 num_batches = 100 def prin...

2018-06-01 16:28:42

阅读数:185

评论数:0

集成学习-多数投票分类器

集成方法(Ensemable method)的目标是:将不同的分类器组成一个元分类器,与但个分类器相比,元分类器具有更好的泛化性能。通常使用多数投票的原则,将大多数分类器预测的结果作为最终的类标,即y^=mode(C1(x),C2(x),⋯,Cm(x)),mode为众数y^=mode(C1(x),...

2018-05-23 16:53:05

阅读数:303

评论数:0

分类器的不同的性能评价指标

读取混淆矩阵(confusion matrix) 混淆矩阵是一个2×2的方阵,用于展示分类器预测的结果——真正(true positive),假负(false negative)、假正(false positive)及假负(false negative) sklearn中使用confusi...

2018-05-19 22:52:19

阅读数:101

评论数:0

网格搜索和随机搜索调优超参数&&嵌套交叉验证选择机器学习算法

网格搜索调优超参数 通过对不同超参数列表进行暴力穷举搜索,并计算评估每个组合对模型性能的影响,以获得参数的最优组合。 对SVM模型调优超参数: import matplotlib.pyplot as plt from sklearn.model_selection import Grid...

2018-05-17 23:41:35

阅读数:288

评论数:0

利用学习和验证曲线评估模型

偏差和方差 参考链接:https://www.zhihu.com/question/20448464 欠拟合=高偏差,过拟合=高方差

2018-05-16 19:56:22

阅读数:104

评论数:0

模型选择和交叉验证

模型选择 holdout方法 在典型的机器学习应用中,为进一步提高模型在预测未知数据的性能,还要对不同的参数设置进行调优和比较,该过程称为模型选择。指的是针对某一特定问题,调整参数以寻求最优超参数的过程。 假设要在10个不同次数的二项式模型之间进行选择: 1.hθ(x)=θ0+θ1x2...

2018-05-16 13:10:06

阅读数:165

评论数:0

正则化(Regularization)

参考:https://www.cnblogs.com/jianxinzhou/p/4083921.html 线性回归中的三种形式: 注:我们讨论的线性或者非线性针对的是自变量的系数,而非自变量本身,所以这样的话不管自变量如何变化,自变量的系数如果符合线性我们就说这是线性的。所以这里我们也就可以...

2018-05-14 18:06:54

阅读数:159

评论数:0

参数估计

点估计 设总体XXX的分布函数的形式已知,但它的一个或多个参数未知,借助于总体XXX的一个样本来估计总体未知参数的值得问题称为参数的点估计问题。 举例: 某炸药厂,一天中发生着火现象的次数XXX是一个随机变量,假设XXX服从λ>...

2018-05-12 19:37:52

阅读数:74

评论数:0

逻辑斯谛回归(logistic regression)

对于二分类问题,输出标记为y∈{0,1}y∈{0,1}y \in \{0, 1 \},0表示负向类,1表示正向类。需要通过一个函数将线性回归模型wTx+bwTx+bw^{T}x+b的输出值映射到[0,1][0,1][0,1]范围内,这个函数就是对数几率函数(logistic function),也...

2018-05-12 17:01:44

阅读数:201

评论数:0

linux常用命令整理

路径切换 cd /home/winycg/ # 转到该目录下 cd .. # 转到上一级目录 cd ../.. # 转到上两级目录 cd - # 输出上一次所在目录的绝对路径并定位到上次所在路径 cd ~user1 # 进入个人所在的主目录 pwd # 显示当前的绝对路径 文件...

2018-05-07 00:06:58

阅读数:71

评论数:0

利用线性回归实现鸢尾花数据集分类

从鸢尾花数据集中挑选山鸢尾(iris-Setosa)和变色鸢尾(iris-Versicolor) 两种花的信息作为测试数据。出于可视化的原因,只考虑数据集中萼片长度(sepla length)和花瓣长度(petal length)这两个特征。 import pandas as pd...

2018-05-04 23:50:54

阅读数:402

评论数:0

梯度下降原理推导

方向导数 设lll是xoy平面上以(x0,y0)(x0,y0)(x_{0},y_{0})为始点的一条射线,el=(cosα,cosβ)el=(cosα,cosβ)e_{l}=(cos \alpha, cos \beta)是与lll同方向的单位向量,射线lll的参数方程为x=x0+tcosαx=x...

2018-05-02 17:03:39

阅读数:45

评论数:0

将python包发布到PyPI和制作whl文件

参考链接: wheel和egg的不同 怎样将自己写的包传达到PyPi 发布你自己的轮子 - PyPI打包上传实践 PyPI官网上传包教程 wheel文件 Wheel和Egg都是python的打包格式,目的是支持不需要编译或制作的安装过程,实际上也是一种压缩文件,将.whl的后缀改为...

2018-04-20 23:33:13

阅读数:518

评论数:0

怎样使用QQ邮箱代收163邮箱的邮件

参考:网易163邮箱帮助 首先介绍一下什么是POP3,SMTP和IMAP POP3 POP3是Post Office Protocol 3的简称,即邮局协议的第3个版本,它规定怎样将个人计算机连接到Internet的邮件服务器和下载电子邮件的电子协议。它是因特网电子邮件的第一个离线协议标准,...

2018-04-19 17:15:46

阅读数:1376

评论数:0

使用gym模拟强化学习环境

参考链接: OpenAI环境库官网:https://gym.openai.com/envs/ OpenAI环境库github:https://github.com/openai/gym/ Classic control CartPole 环境描述:运载体无摩擦地支撑杆子。 动作:2...

2018-04-11 15:55:24

阅读数:197

评论数:0

利用校园网的ipv6访问Google

使用此功能必须处于教育网中,因为使用的是IPv6 1.去如下地址下载hosts文件:https://github.com/lennylxx/ipv6-hosts/blob/master/hosts 2.将下载后的hosts文件替换C:\Windows\System32\drivers\etc\...

2018-04-10 10:53:30

阅读数:1112

评论数:0

windows10和Ubuntu16.04双系统安装及配置tensorflow-gpu版

参考链接:http://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html Windows10 1.安装好Anaconda,打开Anaconda Prompt,输入如下安装tensorflow的GPU版本 pip ins...

2018-04-09 10:27:28

阅读数:334

评论数:0

Jupyter Notebook详解

Jupyter Notebook(此前被称为 IPython notebook)是一个交互式代码编写环境,本质上是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。常用于数据清理和转换,数值模拟,统计建模和机器学习。 交互式的环境,可以一次运行一段代码...

2018-04-07 23:07:02

阅读数:90

评论数:0

Tensorflow实现多GPU并行

Tebsorflow开源实现多GPU训练cifar10数据集:cifar10_multi_gpu_train.py Tensorflow开源实现cifar10神经网络:cifar10.py Tensorflow中的并行分为模型并行和数据并行。模型并行需要根据不同模型设计不同的并行方式,其主要原...

2018-03-30 16:11:38

阅读数:1210

评论数:2

使用VNC和SSH连接Windows和Linux以及Linux和Linux

参考链接:莫凡VNC连接教程 使用VNC远程控制 Linux端(Server端) 安装x11vnc软件,相当于VNC的server端 sudo apt-get install x11vnc 设置连接VNC-server时的密码: x11vnc -storepasswd 开...

2018-03-27 19:46:30

阅读数:258

评论数:0

python多进程利用Multiprocessing运行程序

参考链接: multiprocessing官网 https://blog.csdn.net/cityzenoldwang/article/details/78584175 博主整理 https://blog.csdn.net/quqiuzhu/article/details/511564...

2018-03-26 17:29:30

阅读数:572

评论数:0

ES实现强化学习

参考文献: ES实现强化学习论文-from OpenAI Mirrored Sampling and Sequential Selection for Evolution Strategies https://morvanzhou.github.io/tutorials/machine-le...

2018-03-24 23:49:30

阅读数:90

评论数:0

基于HyperNEAT等NEAT扩展算法的研究

参考链接: HyperNEAT介绍 MultiNEAT库官网 NEAT各扩展代码库 MultiNEAT库github 安装以及使用MultiNEAT库(基于Ubuntu 16.04) 1.安装Anaconda环境,安装MultiNEAT库 Anaconda安装路径:/home/win...

2018-03-21 15:46:17

阅读数:664

评论数:0

强化学习-Policy Gradients

策略网络,即建立一个神经网络模型,通过观察环境状态,直接预测出目前应该执行的策略(Policy),执行这个策略可以获得最大期望收益。策略网络不只是使用当前的reward作为期望收益,而是使用discounted future reward,即把未来奖励乘上衰减系数γ,γ为略小于1的数,期望收益为r...

2018-03-19 22:57:31

阅读数:232

评论数:0

遗传算法总结

参考链接:http://blog.csdn.net/tsroad/article/details/52448313http://blog.sina.com.cn/s/blog_5698433c0102v0d9.html

2018-03-17 14:28:00

阅读数:49

评论数:0

使用gym库Classic control实现deep Q learning

参考链接:https://gym.openai.com/envs/   OpenAI gym官网https://github.com/openai/gym#installation  gym安装教程http://blog.csdn.net/cs123951/article/details/7785...

2018-03-07 11:30:06

阅读数:660

评论数:0

NEAT(基于NEAT-Python模块)实现监督学习和强化学习

参考链接:http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf  NEAT论文https://morvanzhou.github.io/tutorials/machine-learning/evolutionary-algorithm/...

2018-03-03 23:51:31

阅读数:1032

评论数:0

深度学习相关优化器以及在tensorflow的使用

参考链接:https://arxiv.org/pdf/1609.04747.pdf 优化器对比论文 https://www.leiphone.com/news/201706/e0PuNeEzaXWsMPZX.html 论文翻译版 http://blog.csdn.net/u0143816...

2018-02-24 16:30:06

阅读数:1004

评论数:2

强化学习-DQN

参考链接:Deep Q Network 的简称叫 DQN, 是将 Q learning 的优势 和 Neural networks 结合了. 如果我们使用 tabular Q learning, 对于每一个 state, action 我们都需要存放在一张 q_table 的表中. 如果像显示生活...

2018-02-23 18:36:05

阅读数:228

评论数:0

强化学习-Sarsa

教学链接:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/3-1-A-sarsa/学习该算法之前,需要先了解Q-learning,与之进行比较,Q-learning教程:http://bl...

2018-02-18 19:27:19

阅读数:329

评论数:0

wxPython绘制相关图形

参考链接:http://blog.csdn.net/tony_wong/article/details/17735999http://blog.csdn.net/webzhuce/article/details/72598876https://www.yiibai.com/wxpython/wxp...

2018-02-11 23:28:55

阅读数:303

评论数:0

强化学习-Q learning

参考链接:http://blog.csdn.net/itplus/article/details/9361915https://www.zhihu.com/question/26408259/answer/123230350https://morvanzhou.github.io/tutorial...

2018-02-05 00:40:19

阅读数:615

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭