当前搜索:

怎样使用QQ邮箱代收163邮箱的邮件

参考:网易163邮箱帮助 首先介绍一下什么是POP3,SMTP和IMAP POP3 POP3是Post Office Protocol 3的简称,即邮局协议的第3个版本,它规定怎样将个人计算机连接到Internet的邮件服务器和下载电子邮件的电子协议。它是因特网电子邮件的第一个离线协议标准,...
阅读(25) 评论(0)

使用gym模拟强化学习环境

参考链接: OpenAI环境库官网:https://gym.openai.com/envs/ OpenAI环境库github:https://github.com/openai/gym/ Classic control CartPole 环境描述:运载体无摩擦地支撑杆子。 动作:2...
阅读(23) 评论(0)

利用校园网的ipv6访问Google

使用此功能必须处于教育网中,因为使用的是IPv6 1.去如下地址下载hosts文件:https://github.com/lennylxx/ipv6-hosts/blob/master/hosts 2.将下载后的hosts文件替换C:\Windows\System32\drivers\etc\...
阅读(12) 评论(0)

windows10和Ubuntu16.04双系统安装及配置tensorflow-gpu版

参考链接:http://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html Windows10 1.安装好Anaconda,打开Anaconda Prompt,输入如下安装tensorflow的GPU版本 pip ins...
阅读(100) 评论(0)

Jupyter Notebook详解

Jupyter Notebook(此前被称为 IPython notebook)是一个交互式代码编写环境,本质上是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。常用于数据清理和转换,数值模拟,统计建模和机器学习。 交互式的环境,可以一次运行一段代码...
阅读(34) 评论(0)

Tensorflow实现多GPU并行

Tebsorflow开源实现多GPU训练cifar10数据集:cifar10_multi_gpu_train.py Tensorflow开源实现cifar10神经网络:cifar10.py Tensorflow中的并行分为模型并行和数据并行。模型并行需要根据不同模型设计不同的并行方式,其主要原...
阅读(33) 评论(2)

使用VNC连接Windows和Linux+使用SSH在Windows和Linux之间传输文件

参考链接:莫凡VNC连接教程 使用VNC连接系统 Linux端(Server端) 安装x11vnc软件,相当于VNC的server端 sudo apt-get install x11vnc 设置连接VNC-server时的密码: x11vnc -storepasswd ...
阅读(95) 评论(0)

Ubuntu如何修改python的默认版本

查看python版本:python --version 查询系统是否安装python 3.5:whereis python3.5 删除原有的python连接文件: sudo rm /usr/bin/python 建立python3.5的软连接:sudo ln -s /usr/bin/pyth...
阅读(14) 评论(0)

python多进程利用Multiprocessing运行程序

参考链接: multiprocessing官网 https://blog.csdn.net/cityzenoldwang/article/details/78584175 博主整理 https://blog.csdn.net/quqiuzhu/article/details/511564...
阅读(30) 评论(0)

ES实现强化学习

参考文献: ES实现强化学习论文-from OpenAI Mirrored Sampling and Sequential Selection for Evolution Strategies https://morvanzhou.github.io/tutorials/machine-le...
阅读(35) 评论(0)

基于HyperNEAT等NEAT扩展算法的研究

参考链接: HyperNEAT介绍 MultiNEAT库官网 NEAT各扩展代码库 MultiNEAT库github 安装以及使用MultiNEAT库(基于Ubuntu 16.04) 1.安装Anaconda环境,安装MultiNEAT库 Anaconda安装路径:/home/win...
阅读(76) 评论(0)

强化学习-Policy Gradients

策略网络,即建立一个神经网络模型,通过观察环境状态,直接预测出目前应该执行的策略(Policy),执行这个策略可以获得最大期望收益。策略网络不只是使用当前的reward作为期望收益,而是使用discounted future reward,即把未来奖励乘上衰减系数γ,γ为略小于1的数,期望收益为r...
阅读(44) 评论(0)

遗传算法总结

参考链接:http://blog.csdn.net/tsroad/article/details/52448313http://blog.sina.com.cn/s/blog_5698433c0102v0d9.html
阅读(22) 评论(0)

使用gym库Classic control实现deep Q learning

参考链接:https://gym.openai.com/envs/   OpenAI gym官网https://github.com/openai/gym#installation  gym安装教程http://blog.csdn.net/cs123951/article/details/7785...
阅读(174) 评论(0)

NEAT(基于NEAT-Python模块)实现监督学习和强化学习

参考链接:http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf  NEAT论文https://morvanzhou.github.io/tutorials/machine-learning/evolutionary-algorithm/...
阅读(265) 评论(0)

深度学习相关优化器以及在tensorflow的使用

参考链接:https://arxiv.org/pdf/1609.04747.pdf 优化器对比论文 https://www.leiphone.com/news/201706/e0PuNeEzaXWsMPZX.html 论文翻译版 http://blog.csdn.net/u0143816...
阅读(159) 评论(0)

强化学习-DQN

参考链接:Deep Q Network 的简称叫 DQN, 是将 Q learning 的优势 和 Neural networks 结合了. 如果我们使用 tabular Q learning, 对于每一个 state, action 我们都需要存放在一张 q_table 的表中. 如果像显示生活...
阅读(118) 评论(0)

强化学习-Sarsa

教学链接:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/3-1-A-sarsa/学习该算法之前,需要先了解Q-learning,与之进行比较,Q-learning教程:http://bl...
阅读(73) 评论(0)

wxPython绘制相关图形

参考链接:http://blog.csdn.net/tony_wong/article/details/17735999http://blog.csdn.net/webzhuce/article/details/72598876https://www.yiibai.com/wxpython/wxp...
阅读(96) 评论(0)

强化学习-Q learning

参考链接:http://blog.csdn.net/itplus/article/details/9361915https://www.zhihu.com/question/26408259/answer/123230350https://morvanzhou.github.io/tutorial...
阅读(178) 评论(0)
    个人资料
    持之以恒
    等级:
    访问量: 13万+
    积分: 4253
    排名: 8897
    赞助一下
    如果您觉得我的文章对您有帮助的话,不妨小额赞助一下,激励我写出更多的好文章,谢谢大家!

    以下是我的支付宝和微信账户