平面3连杆机器人正逆解

本文探讨了平面3连杆机器人的正逆解问题。通过介绍结构与DH表,阐述了如何建立机器人坐标系,并求解正解。在运动学逆解部分,针对冗余结构导致的非唯一解,提出了利用末端工具坐标系姿态来限定解的方法,通过求解一系列几何关系,最终确定关节转角。这种方法适用于连杆长度相近的情况,具有唯一解且计算效率高。
摘要由CSDN通过智能技术生成

        对于平面连杆类机器人,课本、论文以及实际使用的机器人(SCARA机器人就是平面连杆机器人的变种),基本上都是平面2连杆。即,给定平面坐标(x,y),对应两组(theta1,theta2),通过选接就可以确定唯一解。实际上,由于作业空间等的需求,有时需要平面3连杆机器人来完成平面的定位,即给定平面坐标(x,y),需要求出唯一对应的(theta1、theta2、theta3),对于(x,y) = f(theta1,theta2,theta3)这种系统,显然有无穷解。为了在只给定(x,y)的情况下,获取唯一对应的(theta1、theta2、theta3),我们需要额外计算出一组条件,我采用的方法是:根据(x,y)计算并指定末端连杆的姿态。

结构与DH表

        平面3连杆机器人的结构和各坐标系定义如下(右手坐标系、右手旋转):

        其中x0-y0叫做“基坐标系(robot frame)”,该坐标系作为参考坐标系,固定不动;x1-y1固连在第一关节,相对与x0-y0仅有转交角theta1;x2-y2固连在第二关节,相对与x1-y1有转交角theta2和连杆长度L1;x3-y3固连在第三关节,相对与x2-y2有转交角theta3和连杆长度L2;xtool-ytool为固连在第三连杆末端的工具坐标系,相对与x3-y3仅有连杆长度L3。

        根据上图,得到标准DH表如下:

MatlabSimMechanics自由度串联机器人正解反解-MyRobot_moveline.rar 上次我发了二自由度串联机器人的正解和反解的贴子,可能这个论坛的高手觉得太简单了,都问我做的是是不是并联机器人。 前几天我感到很羞愧,也知道在这个论坛一定不能班门弄斧,本来我想把这次做的东西在年前就贴出来的,但是鼓励了一下自己,先做了一个六自由度机器人,我已经贴了出来。 这次是一个比较简单的串联自由度机器人 手头也正准备做两个平面并联的机器人,还望大家多给我点意见。 我才只有大学年级,毫无疑问是一个菜鸟,要好好向老鸟学习才是。 我先简单说明我建立模型的思路和步骤 首先,制作一个生成轨迹的子系统,这个用最简单的simulink就可以做出来。 然后,制作一个simmechanics的系统,这是整个仿真的关键部分,还是强调坐标系的灵活使用。 再者,制作一个位置逆解的程序,这里我个人比较喜欢使用数值解法,只要用一个matlabfun模块就可以把m文件和simulink结合起来,可以大大的减少工作量,实现复杂的功能。 最后,制作joint的输入模块,所有的输入都是转动的位移,这一步是最简单的。 主要用到matlab中的一个模块和一个命令Simechanics模块和优化工具箱中的fsolve命令 好了言归正传,我先说简单的自由度机器人,这个就是最典型的PUMA机器人 但是我必须要说明的是,我只是为了演示simmechanics工具箱的使用,所以我把手腕的部分去除了,如果大家有兴趣的话希望在我的模型上加以改进。 这个机器人实际上就是连杆个转动副,连杆的长度分别为a1,a2和a3 必须要有个输入才能得到一个稳定的位置,换句话说会有有个方程,那么它们是 x=cos*cos*cos*a3-cos*sin*sin*a3 cos*cos*a2 y=sin*cos*cos*a3-sin*sin*sin*a3 sin*cos*a2 z=sin*cos*a3 cos*sin*a3 sin*a2 a1 其中th1,th2和th3是个转动副的转角 这个是根据DH法推出来的,在这里我就不多说了,如果不用DH法也可以很简单的算出来,看大家的喜好了。 现在的任务就是,要使机器臂的末端走出一条直线来 那我就随便乱说了,原理和方法是一样的就可以了 就从沿直线走到吧 好了下面我就把m文件和仿真的图都贴出来 大家多给我点意见啊,有问题也可以发邮件给我,欢迎交流 xukai19871105@126.com %MyRobot有个转动关节,共有个自由度 %该文件用于在simulink中求解个转动副的转角 function [result]=MyRobot_Inverse %方便编程,转化传入的数据 x=u; y=u; z=u; %连杆的长度 a1=1; a2=0.8; a3=0.5; %求解参数设置 options=optimset; %调用fsolve命令求解个转角 result=fsolve; %求解个转角的非线性方程组 function [theta]=NumericalSolution %方便编程,转化输入值 th1=u; th2=u; th3=u; theta=[cosd*cosd*cosd*a3-cosd*sind*sind*a3 cosd*cosd*a2-x;     sind*cosd*cosd*a3-sind*sind*sind*a3 sind*cosd*a2-y;     sind*cosd*a3 cosd*sind*a3 sind*a2 a1-z];
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值