wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

排序:
默认
按更新时间
按访问量

博客搬家成功..............................................................................................

成功一键搬家到CnBlogs,有些图片没有转过去,还是留在CSDN吧新地址:https://www.cnblogs.com/wishchin/

2018-06-19 18:16:15

阅读数:39

评论数:0

AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

  接上一篇:AI:IPPR的数学表示-CNN复杂结构进化(Alex、ZF、Inception、Res、InceptionRes)。                        前言:AutoML-NasNet         VGG结构和INception结构、ResNet基元结构的出现,验证...

2018-05-11 15:39:19

阅读数:186

评论数:0

人工机器:机器学习的哲学原理、基础及完备性的来由

        观测->假设->归纳->演绎->过拟合,这是ML的一般套路和基础指导准则。导言        对于人工智能,有诸多定义,也有诸多质疑。各家的定义不用多追究。从各个领域提出对机器学习的理解,同时也...

2018-03-11 14:37:44

阅读数:190

评论数:0

AI:IPPR的数学表示-CNN结构进化(Alex、ZF、Inception、Res、InceptionRes)

前言:        文章:CNN的结构分析-------        文章:历年ImageNet冠军模型网络结构解析-------        文章:GoogleLeNet系列解读-------        文章:DNN结构演进History—CNN-GoogLeNet :Going De...

2017-07-24 16:54:45

阅读数:2915

评论数:0

AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层)

        类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长。比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽。CNN方法的多层结构,在保...

2017-07-17 13:50:57

阅读数:569

评论数:0

三维重建6:绑架问题/SensorFusion/IMU+CV-小尺度SLAM

机器人的“绑架”问题是指在缺少它之前的位置信息情况下,去确定机器人的当前位姿,例如当机器人被安置在一个已经构建好地图的环境中,但是并不知道它在地图中的相对位置,或者在移动过程中,由于传感器的暂时性功能故障或相机的快速移动,都导致机器人先前的位置信息的丢失,就像人质的眼睛被蒙上黑布条,拉上集装箱被运...

2017-06-20 14:10:28

阅读数:3736

评论数:0

三维重建5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题 和三维重建:SLAM的粒度和工程化问题 。大规模三维场景重建的尺度增大,因此相对于整个重建过程的粒度也从点到特征点到目标物体级别,对场景进行语义标记成为重要的工作。

2017-06-20 10:50:07

阅读数:4081

评论数:0

三维重建:SLAM的尺度和方法论问题

在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程. 由于单视频的信息不完全,因此三维重建需要利用经验知识.。而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的关系.然后利用多个二维图象中的信息重建出...

2016-05-18 19:19:25

阅读数:5113

评论数:3

三维重建:SLAM的粒度和工程化问题

三维重建根据时间和场景的粒度不同需要引入不同的工程化方法:1.像素级别重建,也称为稠密重建;2.特征点级别重建,也称为稀疏重建;3.环境重建,被称为目标级别重建。

2016-05-18 19:08:44

阅读数:3136

评论数:1

自动化:正义社会的硬件基础(计算机科学)

        为了增加这个月的文章数量,把写在科学网上的文章再贴到CSDN上面。        科学网链接:正义社会的硬件基础        在《超人.钢铁之躯》,里面卡艾尔的言论:我觉得氪星人失去了一样宝贵的东西,可以选择的自由。二、正义的硬件基础?      阳光越是强烈的地方,阴影就越是深...

2015-11-30 10:13:15

阅读数:610

评论数:0

图像描述:各种维度图像的逻辑描述形式

在图像分析处理领域,图像的逻辑描述形式是计算机处理图像的基础,逻辑形式在 逻辑层面 描述出:图像到底是什么?          在几何数学中,空间作为集合的存在形式,根据不同的约束可以划分为不同的空间。具有拓扑结构的集合构成拓扑空间,局部可度量且正交的拓扑空间为流形,全部可度量的(只用一个坐标系即...

2015-11-18 11:08:21

阅读数:1642

评论数:0

Python:Matplotlib 画曲线和柱状图(Code)

这是我关于pose识别率的实验结果,感觉结果真是令人不可思议!(非博主原文!) 原文链接:http://blog.csdn.net/ikerpeng/article/details/20523679 有少量修改,如有疑问,请访问原作者

2014-05-03 15:39:04

阅读数:33921

评论数:0

Learning Face Age Progression: A Pyramid Architecture of GANs

前言       作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。       CNN作为一个基本...

2018-06-19 17:44:36

阅读数:40

评论数:0

个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page?

文章链接:个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page? 感觉还是Fuck The Dog!看来还是以后把文章写在本地,然后再上传到CSDN吧。被CSDN的缓存机制坑了几次,得非常注意这次事件才行!!!...

2018-06-19 17:21:50

阅读数:73

评论数:0

博客需要搬家

太他nia的垃圾了,写完之后点击发布,只保留了前一段,后面的长篇大论全都没了,感情是自动保存草稿的那一段,其他的呢。其他的呢?本地的没有上传上去,这个缓存机制有很大问题,太恶心人了!转移到其他地方吧................

2018-06-19 16:54:51

阅读数:46

评论数:0

Learning Face Age Progression: A Pyramid Architecture of GANs

前言       作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。       CNN作为一个基本...

2018-06-19 16:40:44

阅读数:46

评论数:0

三维重建:GitHub百度Apollo 2.0

GitHub:https://github.com/ApolloAuto/apollo1. 关于Apollo的数据:Apollo的数据会如何开放?自动驾驶数据将包括具有高分辨率图像和像素级别标注的 RGB 视频,具有场景级语义分割的密集三维点云、基于双目立体视觉的视频和全景图像。数据集中提供的图像...

2018-06-06 18:20:29

阅读数:440

评论数:1

语义分割:使用关系图辅助图像分割-Capsule Network、IceNet

文章:欲取代CNN的Capsule Network究竟是什么来头?它能为AI界带来革命性转折么?

2018-06-06 16:48:35

阅读数:94

评论数:0

预测学习、深度生成式模型、DcGAN、应用案例、相关paper

         大模型需要更大量的数据,用以拟合更复杂的假设空间。GAN本身可以用于生成数据,在GAN的学习过程中隐藏了弱监督学习和增强学习的思想。下文主要是对GAN应用于NLP进行相关分析,配图不错,摘抄下来,删除掉关于NLP的部分。本文有大量修改,如有疑虑,请移步原文。       文章:深...

2018-06-05 15:08:54

阅读数:258

评论数:0

最优化方法系列:Adam+SGD—>AMSGrad

        自动调参的Adam方法已经非常给力了,不过这主要用于工程界,在多数科学实验室中,依然使用了传统的SGD方法,在SGD基础上增加各类学习率的主动控制,以达到对复杂模型的精细调参,以达到刷出最高的分数。         ICLR会议的         On the convergenc...

2018-06-05 10:42:21

阅读数:161

评论数:0

三维卷积:全景图像Spherical CNNs(Code)

         卷积神经网络(CNN)可以很好的处理二维平面图像的问题。然而,对球面图像进行处理需求日益增加。例如,对无人机、机器人、自动驾驶汽车、分子回归问题、全球天气和气候模型的全方位视觉处理问题。         将球形信号的平面投影作为卷积神经网络的输入的这种Too Naive做法是注定...

2018-06-04 11:47:54

阅读数:530

评论数:0

语音跟踪:信号分解、锁相、鸡尾酒会效应、基于PR的信号分离

        NLP中关于语音的部分,其中重要的一点是语音信号从背景噪音中分离。比如在一个办公室场景中,有白天的底噪-类似于白噪音的噪音、空调的声音、键盘的啪啪声、左手边45度7米元的地方同事讨论的声音、右手边1.5米远处同事讨论的声音、打印机的声音。各种声音混杂在一起,从自然人的角度来分别,很...

2018-06-01 17:32:14

阅读数:146

评论数:0

GPC:使用GPC计算intersection容易出现的问题

     在使用GPC计算多边形的交的时候,出现问题     //1.2. 另一种方法,判断新的多边形是否和老多边形相交     Poly cross = (PolyDefault) Clip.intersection( filed, polyNig );         若filed 为两个分离...

2018-05-22 15:22:24

阅读数:69

评论数:0

CNN结构:可用于时序预测复合的DNN结构-AcGANs、误差编码网络 ENN

前言:模式识别问题       模式函数是一个从问题定义域到模式值域的一个单射。      从简单的贝叶斯方法,到只能支持二分类的原始支持向量机,到十几个类的分类上最好用的随机森林方法,到可以支持ImageNet上海量1860个类且分类精度极高的InceptionV4(参考:CNNhttp://b...

2018-05-22 13:28:30

阅读数:101

评论数:0

DNN结构构建:NAS网络结构搜索和强化学习、迁移学习

前言        谷歌推出的NASNet架构,用于大规模图像分类和识别。NASNet架构特点是由两个AutoML设计的Layer组成——Normal Layer and Reduction Layer,这样的效果是不再需要相关专家用human knowledge来搭建卷积网络架构,直接用RNN把...

2018-05-14 15:23:20

阅读数:144

评论数:0

基于视觉的机械手控制

基于手眼协同的机器人控制系统:没有一个是不能解决的,但这样做会将我们领上一条非常复杂的道路。结果是一台很重、很大的机器人,它反过来又要求有强有力的驱动器来移动它,以及高质量的传感器和一个复杂的控制器——所有这些都推高了机器人的总成本。然而,除非万不得已.......................

2018-05-10 10:57:03

阅读数:132

评论数:0

远程图形界面:VncServer与KDE桌面远程连接

强烈不建议putty+xming的工作方式,太慢了,且界面也不是特别友好。       原文:vncserver与KDE远程连接1、安装KDE环境yuminstall -y kdebase-workspace kdebase kdeadmin kdenetwork kdeutilskde-l10n...

2018-04-11 16:40:11

阅读数:163

评论数:0

远程图形界面:使用putty+xmin远程登录ubuntu-kde

           让我继续用反人类的编辑器Vim和emacs,我宁愿自断三指。因此,在Win端配置WinSCP+Putty+Xming远程操作ubuntu。          参考链接:putty+xming远程登录Ubuntu16.04图形界面  ---1.在sever上安装ubuntuKD...

2018-04-10 14:33:13

阅读数:97

评论数:0

CUDA 显存操作:CUDA支持的C++11

CUDA9的编译器和语言改进 使用CUDA 9,nvcc编译器增加了对C ++ 14的支持,其中包括新功能 通用的lambda表达式,其中使用auto关键字代替参数类型; auto lambda = [](auto a,auto b){return a * b;}; 功能的返回类型扣除(使...

2018-04-09 18:08:56

阅读数:144

评论数:0

C++11:using 的各种作用

C++11中using关键字的主要作用是:为一个模板库定义一个别名。

2018-04-09 17:57:23

阅读数:87

评论数:0

C++ 模板template<class T>和template<typename T>

在C++后期的版本中,为了不再和class向混淆,所以加入了新的关键字typename用以区分。对于我个人而言,在定义模板函数时,更倡导使用typename关键字。

2018-04-09 16:14:17

阅读数:89

评论数:0

Detectron:Pytorch-Caffe2-Detectron的一些跟进

        pytorch官网:http://pytorch.org/上只有PyTroch的ubuntu和Mac版本,赤裸裸地歧视了一把Windows低端用户。1. Caffe源码:Caffe源码理解之存储  Caffe2存储Caffe2中的存储结构层次从上到下依次是Workspace, Bl...

2018-04-09 15:09:27

阅读数:172

评论数:0

TF实战:(Mask R-CNN原理介绍与代码实现)-Chapter-8

       这篇文章写的挺辛苦,不过对于Mask介绍着墨不多。       文章: TF实战:Chapter-8上(Mask R-CNN介绍与实现)        ...............................................     MRCNN采用和Faster...

2018-04-03 15:28:50

阅读数:69

评论数:0

The type javax.servlet.http.HttpServletRequest cannot be resolved.

       使用Eclipse进行编写安卓网络通信程序时,出现The type javax.servlet.http.HttpServletRequest cannot be resolved. 问题。       解决方法:是缺少serverlet的引用库,解决如下 1.工程右键-proper...

2018-04-03 14:32:39

阅读数:48

评论数:0

StyleAI厚积薄发: Android网络图片数据传输

        在StyleAI上厚积了这么长时间,憋了这么久,本来想憋个更大的,不过还是薄发一次的好。三、直接使用别人的工程文章:Android学习之客户端上传图片到服务器下载地址:https://download.csdn.net/download/wlj142/7594879可以运行二、在E...

2018-03-28 16:57:14

阅读数:61

评论数:0

CNN:测试一下YoloV3

            项目地址:https://pjreddie.com/darknet/yolo/              mAP提升了不少,在VS上试一把            V3 的权值:https://pjreddie.com/media/files/yolov3.weights  ...

2018-03-27 15:05:56

阅读数:593

评论数:0

DeepMind:所谓SACX学习范式

           机器人是否能应用于服务最终还是那两条腿值多少钱,而与人交互,能真正地做“服务”工作,还是看那两条胳膊怎么工作。大脑的智能化还是非常遥远的,还是先把感受器和效应器做好才是王道。           关于强化学习,根据Agent对策略的主动性不同划分为主动强化学习(学习策略:必须...

2018-03-26 11:01:30

阅读数:69

评论数:0

CNN结构:场景分割与Relation Network

           参考第一个回答:如何评价DeepMind最新提出的RelationNetWork            参考链接:Relation Network笔记  ,暂时还没有应用到场景中           LiFeifei阿姨的课程:CV与ML课程在线论文:A simple neu...

2018-03-23 14:11:58

阅读数:112

评论数:0

Detectron-MaskRCnn:Mask判别和获取前向Mask的标签

        对于FCN-SceneParse网络,最后卷积生成N个类别的maps,每个Map都得到图像所有点的单类概率。MaskRCNN的结构与FCN不相同。       参考三个文章:       Detectron总结1:Blob的生成 和 generate proposal       ...

2018-03-23 13:19:39

阅读数:124

评论数:0

三维CNN:收集一些最近的3d卷积网络PointNet++

        PointNet++是在PointNet上做出了改进,考虑了点云局部特征提取,从而更好地进行点云分类和分割。 先简要说一下PointNet: PointNet,其本质就是一种网络结构,按一定的规则输入点云数据,经过一层层地计算,得出分类结果或者分割结果。...

2018-03-22 18:04:48

阅读数:985

评论数:0

MaskRCNN:三大基础结构DeepMask、SharpMask、MultiPathNet

MaskXRCnn俨然成为一个现阶段最成功的图像检测分割网络,关于MaskXRCnn的介绍,需要从MaskRCNN看起。        当然一个煽情的介绍可见:何恺明团队推出Mask^X R-CNN,将实例分割扩展到3000类。        MaskRCnn取得的精细结果有三个主要技术构架:De...

2018-03-22 17:45:36

阅读数:171

评论数:0

c++中的类型转换--reinterpret_cast

原文链接:  浅析c++中的类型转换--reinterpret_cast 转换reinterpret_cast作用为: 允许将任何指针转换为任何其他指针类型。 也允许将任何整数类型转换为任何指针类型以及反向转换。看着上面的描述就有种放浪形骸的赶脚。更会让人不寒而栗,太随意!语法还是老样子: rei...

2018-03-22 15:06:24

阅读数:28

评论数:0

三维重建PCL:点云单侧面正射投影

        终于把点云单侧面投影正射投影的代码写完了,为一个阶段,主要使用平面插值方法,且只以XOY平面作为的正射投影面。有些凑合的地方,待改进。        方法思路:使用Mesh模型,对每一个表面进行表面重建。借助OpenCV Mat类型对投影平面进行内点判断,对内点位置进行插值。   ...

2018-03-22 15:02:03

阅读数:569

评论数:3

点云插值:三维平面参数确定-不共线三点的平面方程

  参考链接:三维空间中的平面方程                 这个链接是错误的: http://blog.csdn.net/PengPengBlog/article/details/52774421      //获取平面方程//Ax + By + Cz + D std::vector&a...

2018-03-22 11:10:55

阅读数:100

评论数:0

场景分割:MIT Scene Parsing 与DilatedNet 扩展卷积网络

FCN中有两个关键,一个是pooling减小图像尺寸增大感受野,另一个是upsampling扩大图像尺寸。在先减小再增大尺寸的过程中,肯定有一些信息损失掉了,那么能不能设计一种新的操作,不通过pooling也能有较大的感受野看到更多的信息呢?答案就是dilated conv。

2018-03-16 15:38:29

阅读数:115

评论数:0

NVIDIA各个领域芯片现阶段的性能和适应范围

NVIDIA作为老牌显卡厂商,在AI领域深耕多年。功夫不负有心人,一朝AI火,NVIDIA大爆发,NVIDIA每年送给科研院所和高校的大量显卡,大力推广Physix和CUDA,终于钓了产业的大鱼。       由弱到强理一下NVIDIA的现有产品线,在AMD锐龙发力之后,NVIDIA已经取代Int...

2018-03-16 11:49:24

阅读数:270

评论数:0

最优化方法系列:SGD、Adam

文章链接:Deep Learning 最优化方法之SGD 72615436本文是Deep Learning 之 最优化方法系列文章   整个优化系列文章列表: Deep Learning 之 最优化方法 Deep Learning 最优化方法之SGD Deep Learn...

2018-03-15 17:58:08

阅读数:184

评论数:0

| 一文读懂迁移学习(附学习工具包)

          当一个CNN用于另一个领域,就使用到了迁移学习。迁移学习是一种用于模型领域泛化和扩展的工具。          文章链接:独家 | 一文读懂迁移学习(附学习工具包)          参考:当深度学习成为过去,迁移学习才是真正的未来?           知乎:什么是迁移学习?...

2018-03-15 17:24:29

阅读数:74

评论数:0

Caffe RPN:把RPN网络layer添加到caffe基础结构中

                 在测试MIT Scene Parsing Benchmark (SceneParse150)使用FCN网络时候,遇到Caffe错误。          遇到错误:不可识别的网络层crop 网络层    CreatorRegistry&amp;amp; re...

2018-03-14 09:56:25

阅读数:39

评论数:0

caffe2:conda路径和权限问题

         在使用conda之后,总是不能直接使用 conda install 命令,需要把codna添加到系统路径,取代默认Python。在~/.bashrc中,添加# added by Anaconda2 installerexport PATH=&quot;/home/wish...

2018-03-11 14:17:23

阅读数:400

评论数:4

提示
确定要删除当前文章?
取消 删除
关闭
关闭